旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法——圆周系统之旋转模式。那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的直角坐标(x,y),求其极坐标(α,γ),实际上是求arctan(y/x)。

旋转模式下,每次迭代使z趋近于α(α-z趋近于0),而向量模式下,则使y趋近于0,这一点很好理解,即从坐标位置,旋转到x正半轴,一共旋转了多少角度,则该角度即为α,从而知道了极角。

如图所示,在单位圆上,向量OP与X轴的正半轴夹角为α,故P点的坐标可表示为

根据开头描述,我们需要转动向量OP,先顺时针旋转θ角至向量OQ,Q点的坐标可表示为

这里定义θ为目标旋转角度。根据三角函数公式可将上式展开为

现在已经有点 Cordic 算法的样子了,但是我们看到每次旋转都要计算 4 次浮点数的乘法运算,运算量还是太大了。还需要进一步的改进,改进的切入点当然还是坐标变换的过程。

将式(1.1)代入到式(1.3)中可得

用矩阵形式表示为:

旋转了i次以后,可以得到:

最终需将y_Q_i+1转为0,先按45°的二分法查找来解释过程,用C语言描述过程为:

#include <stdio.h>
#include <stdlib.h> double cordic_v(double x, double y); int main(viod)
{
double alfa = cordic_v(120.0,200.0); //直角坐标(x,y)
printf("\n 极角为 = %f \n",alfa);
return 0;
}
double cordic_v(double x, double y)
{
const double sine[] = {0.7071067811865,0.3826834323651,0.1950903220161,
0.09801714032956,0.04906767432742,0.02454122852291,0.01227153828572,
0.006135884649154,0.003067956762966,0.001533980186285,
7.669903187427045e-4,3.834951875713956e-4,1.917475973107033e-4,
9.587379909597735e-5,4.793689960306688e-5,2.396844980841822e-5
}; const double cosine[] = {0.7071067811865,0.9238795325113,0.9807852804032,0.9951847266722,
0.9987954562052,0.9996988186962,0.9999247018391,0.9999811752826,0.9999952938096,
0.9999988234517,0.9999997058629,0.9999999264657,0.9999999816164,0.9999999954041,
0.999999998851,0.9999999997128
};
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
double angle = 45.0; //第一次旋转角度为45°
for( i=0; i<15;i++)
{
if(y > 0)
{
x_new = x * cosine[i] + y * sine[i];
y_new = y * cosine[i] - x * sine[i];
x = x_new;
y = y_new;
angleSum += angle;
} else
{
x_new = x * cosine[i] - y * sine[i];
y_new = y * cosine[i] + x * sine[i];
x = x_new;
y = y_new;
angleSum -= angle;
}
printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f\n", i+1, angle,angleSum );
angle /= 2;
}
return angleSum;
}

经过旋转模式的推导,向量模式的伪旋转公式,可表示为

C语言描述过程,如下:

#include <stdio.h>
#include <stdlib.h>
#include <math.h> double cordic_v(double x, double y);
double r = 0.0; //定义一个模长全局变量 int main(viod)
{
double alfa = cordic_v(120.0,200.0); //直角坐标(x,y)
printf("\n极角 = %5f, 模长 = %5f\n",alfa,r);
return 0;
}
double cordic_v(double x, double y)
{
const double theta[] = { 45.0, 26.56505118, 14.03624347, 7.125016349,
3.576334375, 1.789910608, 0.8951737102, 0.4476141709,
0.2238105004, 0.1119056771, 0.05595289189, 0.02797645262,
0.01398822714, 0.006994113675, 0.003497056851, 0.001748528427
}; //旋转角度
int i = 0;
double x_new, y_new;
double angleSum = 0.0;
r = sqrt(x*x+y*y);
for( i=0; i<16;i++)
{
if(y > 0)
{
x_new = x + y/(1<<i);
y_new = y - x/(1<<i);
x = x_new;
y = y_new;
angleSum += theta[i];
} else
{
x_new = x - y/(1<<i);
y_new = y + x/(1<<i);
x = x_new;
y = y_new;
angleSum -= theta[i];
}
printf("旋转次数: i = %2d 旋转角度 = %10f, 累计旋转角度 = %10f, y = %5f\n", i+1,theta[i],angleSum,y );
}
return angleSum;
}

同样,向量模式的cordic算法适用于第一、四象限的坐标变换,在第二、三象限的坐标需要进行预处理。

参考

FPGA算法学习(1) -- Cordic(圆周系统之向量模式)的更多相关文章

  1. FPGA算法学习(1) -- Cordic(Verilog实现)

    上两篇博文Cordic算法--圆周系统之旋转模式.Cordic算法--圆周系统之向量模式做了理论分析和实现,但是所用到的变量依然是浮点型,而cordic真正的用处是基于FPGA等只能处理定点的平台.只 ...

  2. FPGA算法学习(1) -- Cordic(圆周系统之旋转模式)

    三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)= ...

  3. Cordic算法——圆周系统之向量模式

    旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法--圆周系统之旋转模式.那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的 ...

  4. Cordic算法——圆周系统之旋转模式

    三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)= ...

  5. python学习之算法、自定义模块、系统标准模块(上)

    算法.自定义模块.系统标准模块(time .datetime .random .OS .sys .hashlib .json和pickle) 一:算法回顾: 冒泡算法,也叫冒泡排序,其特点如下: 1. ...

  6. Python之路,Day21 - 常用算法学习

    Python之路,Day21 - 常用算法学习   本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的 ...

  7. 《如何学习基于ARM嵌入式系统》笔记整理

    author:Peong time:20190603 如何学习基于ARM嵌入式系统 一.嵌入式系统的概念 从硬件上讲,将外围器件,与CPU集成在一起. 从操作系统上讲,定制符合要求的系统内核 从应用上 ...

  8. paxos算法学习总结

    核心思想 分布式系统架构下如何让整体尽快达成一致观点,也就是多个不同观点收敛到一个观点的过程. 难点 可能会发生少数节点故障,但绝不是大面积故障,不然系统也没法正常工作. 由于存在单点故障,因此不可能 ...

  9. 某科学的PID算法学习笔记

    最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...

随机推荐

  1. 1.windows下GIT 服务安装

    本章介绍简单在windows 安装git 服务方法.服务器端采用的是Bonobo Git Server,一款用ASP.NET MVC开发的Git源代码管理工具,界面简洁,基于Web方式配置,简单易用. ...

  2. Selenium2学习(十二)-- alert\confirm\prompt

    前言 不是所有的弹出框都叫alert,在使用alert方法前,先要识别出到底是不是alert.先认清楚alert长什么样子,下次碰到了,就可以用对应方法解决. alert\confirm\prompt ...

  3. npm proxy设置网络代理 并使用taobao registry

    npm config set https-proxy http://server:portnpm config set proxy http://server:port npm set registr ...

  4. 【LOJ6062】「2017 山东一轮集训 Day2」Pair(线段树套路题)

    点此看题面 大致题意: 给出一个长度为\(n\)的数列\(a\)和一个长度为\(m\)的数列\(b\),求\(a\)有多少个长度为\(m\)的子串与\(b\)匹配.数列匹配指存在一种方案使两个数列中的 ...

  5. 多目标规划——fgoalattain

    多目标规划 多个目标函数,之间可以用他们的重要程度分析,来一次进行这个序贯算法,当然也可以无限逼近的方案——​ clc,clear; % 约束 a = [- - - - ]; b = [- - ]; ...

  6. nodejs protobuff node-protobuf c++ windows扩展安装笔记

    https://www.npmjs.com/package/node-protobuf 按照作者所说的办法在windows平台安装的办法,先到google的github下载2.6.1版本的protob ...

  7. Linux下安装jdk步骤

    1.检查当前服务器中是否有安装jdkrpm -qa|grep java 2. 批量删除java rpm -qa | grep java | xargs rpm -e --nodeps 3. 安装jdk ...

  8. HDU 1258 Sum It Up(dfs 巧妙去重)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1258 Sum It Up Time Limit: 2000/1000 MS (Java/Others) ...

  9. 使用Mosh,本地Mac locale与Remote Debian locale不一致的问题

    事实上, 你并不需要安装语言包, 只需安装中文字体并将/etc/locale.gen 中zh_CN.UTF-8 前的注释符号去掉, 执行sudo locale-gen 然后重启即可.

  10. neo4j 安装步骤 转自:http://blog.csdn.net/luoluowushengmimi/article/details/19987995

    1. Neo4j简介 Neo4j是一个用Java实现的.高性能的.NoSQL图形数据库.Neo4j 使用图(graph)相关的概念来描述数据模型,通过图中的节点和节点的关系来建模.Neo4j完全兼容A ...