Python的线程池实现
# -*- coding: utf-8 -*-
#Python的线程池实现
import Queue
import threading
import sys
import time
import urllib
#替我们工作的线程池中的线程
class MyThread(threading.Thread):
def __init__(self, workQueue, resultQueue,timeout=30, **kwargs):
threading.Thread.__init__(self, kwargs=kwargs)
#线程在结束前等待任务队列多长时间
self.timeout = timeout
self.setDaemon(True)
self.workQueue = workQueue
self.resultQueue = resultQueue
self.start()
def run(self):
while True:
try:
#从工作队列中获取一个任务
callable, args, kwargs = self.workQueue.get(timeout=self.timeout)
#我们要执行的任务
res = callable(args, kwargs)
#报任务返回的结果放在结果队列中
self.resultQueue.put(res+" | "+self.getName())
except Queue.Empty: #任务队列空的时候结束此线程
break
except :
print sys.exc_info()
raise
class ThreadPool:
def __init__(self, num_of_threads=10):
self.workQueue = Queue.Queue()
self.resultQueue = Queue.Queue()
self.threads = []
self.__createThreadPool(num_of_threads)
def __createThreadPool(self, num_of_threads):
for i in range(num_of_threads):
thread = MyThread(self.workQueue, self.resultQueue)
self.threads.append(thread)
def wait_for_complete(self):
#等待所有线程完成。
while len(self.threads):
thread = self.threads.pop()
#等待线程结束
if thread.isAlive(): #判断线程是否还存活来决定是否调用join
thread.join()
def add_job(self, callable, *args, **kwargs):
self.workQueue.put((callable,args,kwargs))
def test_job(id, sleep = 0.001):
html = ""
try:
time.sleep(1)
conn = urllib.urlopen('http://www.baidu.com/')
html = conn.read(20)
except:
print sys.exc_info()
return html
def test():
print 'start testing'
tp = ThreadPool(10)
for i in range(50):
time.sleep(0.2)
tp.add_job(test_job, i, i*0.001)
tp.wait_for_complete()
#处理结果
print 'result Queue\'s length == %d '% tp.resultQueue.qsize()
while tp.resultQueue.qsize():
print tp.resultQueue.get()
print 'end testing'
if __name__ == '__main__':
test()
import sys
IS_PY2 = sys.version_info < (3, 0)
if IS_PY2:
from Queue import Queue
else:
from queue import Queue
from threading import Thread
class Worker(Thread):
""" Thread executing tasks from a given tasks queue """
def __init__(self, tasks):
Thread.__init__(self)
self.tasks = tasks
self.daemon = True
self.start()
def run(self):
while True:
func, args, kargs = self.tasks.get()
try:
func(*args, **kargs)
except Exception as e:
# An exception happened in this thread
print(e)
finally:
# Mark this task as done, whether an exception happened or not
self.tasks.task_done()
class ThreadPool:
""" Pool of threads consuming tasks from a queue """
def __init__(self, num_threads):
self.tasks = Queue(num_threads)
for _ in range(num_threads):
Worker(self.tasks)
def add_task(self, func, *args, **kargs):
""" Add a task to the queue """
self.tasks.put((func, args, kargs))
def map(self, func, args_list):
""" Add a list of tasks to the queue """
for args in args_list:
self.add_task(func, args)
def wait_completion(self):
""" Wait for completion of all the tasks in the queue """
self.tasks.join()
if __name__ == "__main__":
from random import randrange
from time import sleep
# Function to be executed in a thread
def wait_delay(d):
print("sleeping for (%d)sec" % d)
sleep(d)
# Generate random delays
delays = [randrange(3, 7) for i in range(50)]
# Instantiate a thread pool with 5 worker threads
pool = ThreadPool(5)
# Add the jobs in bulk to the thread pool. Alternatively you could use
# `pool.add_task` to add single jobs. The code will block here, which
# makes it possible to cancel the thread pool with an exception when
# the currently running batch of workers is finished.
pool.map(wait_delay, delays)
pool.wait_completion()
Python的线程池实现的更多相关文章
- Python之路【第八篇】python实现线程池
线程池概念 什么是线程池?诸如web服务器.数据库服务器.文件服务器和邮件服务器等许多服务器应用都面向处理来自某些远程来源的大量短小的任务.构建服务器应用程序的一个过于简单的模型是:每当一个请求到达就 ...
- Python之线程池
版本一: #!/usr/bin/env python # -*- coding:utf-8 -*- import Queue import threading class ThreadPool(obj ...
- python自定义线程池
关于python的多线程,由与GIL的存在被广大群主所诟病,说python的多线程不是真正的多线程.但多线程处理IO密集的任务效率还是可以杠杠的. 我实现的这个线程池其实是根据银角的思路来实现的. 主 ...
- Python的线程池
#!/usr/bin/env python # -*- coding: utf-8 -*- """ concurrent 用于线程池和进程池编程而且更加容易,在Pytho ...
- [python] ThreadPoolExecutor线程池 python 线程池
初识 Python中已经有了threading模块,为什么还需要线程池呢,线程池又是什么东西呢?在介绍线程同步的信号量机制的时候,举得例子是爬虫的例子,需要控制同时爬取的线程数,例子中创建了20个线程 ...
- 《Python》线程池、携程
一.线程池(concurrent.futures模块) #1 介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 P ...
- [python] ThreadPoolExecutor线程池
初识 Python中已经有了threading模块,为什么还需要线程池呢,线程池又是什么东西呢?在介绍线程同步的信号量机制的时候,举得例子是爬虫的例子,需要控制同时爬取的线程数,例子中创建了20个线程 ...
- python实现线程池
线程池 简单线程池 import queue import threading import time class ThreadPool(object): #创建线程池类 def __init__(s ...
- python 绝版线程池
2.绝版线程池设计思路:运用队列queue a.队列里面放任务 b.线程一次次去取任务,线程一空闲就去取任务 import queueimport threadingimport contextlib ...
随机推荐
- docker 部署 笔记
Docker虚拟机常用命令 先更新软件包 yum -y update 安装Docker虚拟机 yum install -y docker 运行.重启.关闭Docker虚拟机 service d ...
- 服务端 安装配置 svn
检查是否安装svn svn --version 看看,既能确定是否安装,又能确定版本多少 安装 svn yum -y install subversion 创建仓库存放目录 mkdir -p /opt ...
- C#工具类之XmlNode扩展类
using System; using System.Linq; using System.Xml; /// <summary> /// XmlNodeHelper /// </su ...
- python time,random,os,sys,序列化模块
一.time模块 表示时间的三种方式 在Python中,通常有这三种方式来表示时间:时间戳.元组(struct_time).格式化的时间字符串: (1)时间戳(timestamp) :通常来说,时间戳 ...
- 使用Maven运行Java main的3种方式使用Maven运行Java main的3种方式
maven使用exec插件运行java main方法,以下是3种不同的操作方式. 一.从命令行运行 1.运行前先编译代码,exec:java不会自动编译代码,你需要手动执行mvn compile来完成 ...
- 多个git库的ssh配置
当拥有多个git服务器,而且都是用ssh认证方式时,需要在~/.ssh下的config文件做如下配置 如下:第一个为本地git库,第二个为github库,第三个为默认git库 Host 192.168 ...
- 解决Input number 框能够能够输入eeeeee 的问题
onKeypress="return (/[\d]/.test(String.fromCharCode(event.keyCode)))" 在input type="n ...
- Linux私房菜阅读笔记
在线man:http://www.linux.com/linux-man-pages 计算机硬件五大单元: 1.输入 2.输出 3.控制单元 4.算数逻辑单元 5.内存 CPU种类 1.RISC( ...
- PHP冒泡排序的实现方法
<?php function BubbleSort($arr){ $count = count($arr); if($count<=1){ return $arr; } for($i=0; ...
- pat1009. Product of Polynomials (25)
1009. Product of Polynomials (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...