BSGS

  $Big\ Step\ Giant\ Step$,大步小步法,一种在$O(\sqrt{p})$内求解方程$a^x\equiv b (mod\ p)$的算法。

  先考虑$p$为质数的情况。

  令$x=im-j$,$m=\lceil \sqrt{p} \rceil$(注意是上取整,要保证大步比小步大),则$a^{im-j}\equiv b(mod\ p)$。

  移项,有$(a^m)^i\equiv ba^j(mod\ p)$。

  首先$0-i$枚举$j$,将$ba^j$存入哈希表。在$1-m$枚举$i$,计算$(a^m)^i$并查询是否存在$ba^j$与之相等,由于大步比小步大,所以找到的一个满足条件的$im-j$就是答案。

  $p$不为质数的情况:exBSGS

二次剩余

  http://blog.miskcoo.com/2014/08/quadratic-residue

  https://blog.csdn.net/l_0_forever_lf/article/details/79052135

  https://blog.csdn.net/qq_35649707/article/details/78922508

  二次剩余有$O(\log^2 n)$的优秀做法,但这里只介绍$O(\sqrt{p})$的奇质数做法。

  二次剩余是指:求解$x^2\equiv a(mod\ p)$

  先介绍几个概念(不一定用的上):

    1.勒让德符号:$\left(\frac a p \right)$为0时表示$a \mod\ p=0$,为1时表示$a$是$p$的二次剩余(即存在模意义下平方根),为-1时表示不是。有定理(后面会证明):$$\left({\frac a p}\right) \equiv a^{\frac{p-1}{2}}(mod\ p)$$

    2.p一共有$\frac{p+1}{2}$个二次剩余,$\frac{p-1}{2}$个非二次剩余。

    因为$a^2\equiv (p-a)^2(mod\ p)$,故至多只有$\frac{p+1}{2}$个数存在平方根。

    3.$(a+b)^p\equiv a^p+b^p(mod\ p)$。

  下面证明定理一(以下省略$\mod\ p$):

    充分性:$a^{\frac{p-1}{2}}\equiv (x^2)^{\frac{p-1}{2}}\equiv x^{p-1}$,由费马小定理得证。

    必要性:考虑$a$在模$p$意义下的原根$g$,$a\equiv g^i$,则有$g^{\frac{i(p-1)}{2}}\equiv 1$,取$x=g^{\frac i 2}$即可。

    证毕。同时我们也得到了一个$O(\sqrt{p})$求奇质数二次剩余的方法:先求出$a$的原根,再用$BSGS$求出$g^k\equiv 1$,则答案为$g^{\frac{k}{p-1}}$。

BSGS与二次剩余的更多相关文章

  1. 【BZOJ5104】Fib数列(BSGS,二次剩余)

    [BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\ ...

  2. BZOJ5104 Fib数列(二次剩余+BSGS)

    5在1e9+9下有二次剩余,那么fib的通项公式就有用了. 已知Fn,求n.注意到[(1+√5)/2]·[(1-√5)/2]=-1,于是换元,设t=[(1+√5)/2]n,原式变为√5·Fn=t-(- ...

  3. cdqz2017-test1-数论 (BSGS + 二次剩余 + CRT)

    若m=0, 就是求n^2n ≡ x mod p (x--) 因为一定优解,所以x一定是p的二次剩余 令g为p的1个原根,且g^k ≡ x mod p 则k是偶数,证明k是偶数: 假设 g1^k1 ≡ ...

  4. Codechef:Fibonacci Number/FN(二次剩余+bsgs)

    题面 传送门 前置芝士 \(bsgs\),\(Cipolla\) 题解 因为题目保证\(p\bmod 10\)是完全平方数,也就是说\(p\bmod 5\)等于\(1\)或\(-1\),即\(5\)是 ...

  5. 省选算法学习-BSGS与exBSGS与二次剩余

    前置知识 扩展欧几里得,快速幂 都是很基础的东西 扩展欧几里得 说实话这个东西我学了好几遍都没有懂,最近终于搞明白,可以考场现推了,故放到这里来加深印象 翡蜀定理 方程$ax+by=gcd(a,b)$ ...

  6. BZOJ 5104 Fib数列(二次剩余+BSGS)

    斐波那契数列的通项: \[\frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})-(\frac{1-\sqrt{5}}{2}))\] 设T=\(\sqrt{5}*N\),\ ...

  7. Codechef:Fibonacci Number/FN——求通项+二次剩余+bsgs

    题意 定义 $F_n$ 为 $$F_n = \left\{\begin{matrix}0, n=0\\ 1, n=1 \\F_{n-1} + F_{n-2}, n > 1\end{matrix} ...

  8. BZOJ5104 Fib数列 二次剩余、BSGS

    传送门 发现只有通项公式可以解决考虑通项公式 \(F_n = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^ ...

  9. bzoj5104 Fib数列(BSGS+二次剩余)

    快AFO了才第一次写二次剩余的题…… 显然应该将Fn写成通项公式(具体是什么写起来不方便而且大家也都知道),设t=((1+√5)/2)n,T=√5N,然后可以得到t-(-1)t/t=√5N,两边同时乘 ...

随机推荐

  1. 模拟赛 yjqa

    考场上怕是石乐志. 状态设计还是很自然的,求什么设什么. f[i]表示前i个人安排好,电梯最早回到0层的时间 转移的话,枚举上一次最后一个带走的是谁 f[i]=min(max(f[j],t[i])+2 ...

  2. NodeJS + PhantomJS 前端自动化资源监控

    前言:最近做前端资源监控,看了很多例子,没有达到想要的效果.首先的槽点是PhantomJS的官方文档,真鸡肋,其次是网上的例子,多数是介绍PhantomJS的用法,而并没有介绍怎么完整的去实现,跟官方 ...

  3. JavaScript的大括号的语义

    Javascript中大括号"{}"有四种语义作用: 语义1. 组织复合语句,这是最常见的: view source   print? 1 if( condition ) { 2 ...

  4. ubuntu使用su切换root用户提示“认证失败”

    在虚拟机上安装了ubuntu,安装时提示设置密码,也设置了,但是在终端操作时,遇到权限不够的问题,于是就想到就是要切换root用户,获取最高权限. 当我使用 su 切换到root用户时,提示我输入密码 ...

  5. POJ1847:Tram(最短路)

    Tram Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 20116   Accepted: 7491 题目链接:http:/ ...

  6. ICE学习笔记一----运行官方的java版demo程序

    建议新手和我一样,从官网下载英文文档,开个有道词典,慢慢啃. 官方文档下载: http://download.csdn.net/detail/xiong_mao_1/6300631 程序代码就不说了, ...

  7. spring和Quartz的定时功能

    一:前沿 最近在做一个定时的功能,就是在一定时间内查询订单,然后告诉用户未付款,已付款等消息通知,而且要做集群的功能,这个集群的功能是指,我部署两套代码,其中一个定时的功能在运行,另外一个就不要运行. ...

  8. php windows rename 中文出错

    php windows rename 中文出错 rename()函数可以重命名文件.目录等,但是要注意目的地和起始地址的编码. 比如:我的PHP文件编码是UTF-8,但是在WINDOW系统中中文默认编 ...

  9. Vijos 1232 核电站问题

    核电站问题 描述 一个核电站有N个放核物质的坑,坑排列在一条直线上.如果连续M个坑中放入核物质,则会发生爆炸,于是,在某些坑中可能不放核物质. 现在,请你计算:对于给定的N和M,求不发生爆炸的放置核物 ...

  10. equestAnimationFrame

    export const requestAnimationFrame = (() => { /* istanbul ignore next */ if (!inBrowser) { return ...