[bzoj3532][Sdoi2014]Lis——拆点最小割+字典序+退流
题目大意
给定序列A,序列中的每一项Ai有删除代价Bi和附加属性Ci。请删除若
干项,使得4的最长上升子序列长度减少至少1,且付出的代价之和最小,并输出方案。
如果有多种方案,请输出将删去项的附加属性排序之后,字典序最小的一种。
题解
首先我们很容易用一个\(\Theta (n^2)\)的算法求出对于每个元素的lis。
考虑以下的建图方式:
由S向f[i]==1的点连边,容量为\(\infty\),
由f[i] = max 向 T 连边, 容量为\(\infty\),
对于每个点,拆为两个点,费用就是B[i]。
为什么这样建图是对的?原因很简单,原问题等价于在新图中找一个点集,使得s到t不再连通,这让我们联想到最小割,考虑到s,t到每个点不计入费用,所以我们设为\(\infty\)。
那么第一个问题解决了,关键是第二个问题:怎样找出字典序最小的割?
我们这样考虑:既然是字典序最小,我们把C[i]从小到大排序,依次检查每一条边,如果在剩余网络中它不连通,那么这条边一定是原图的一个最小割,我们把这条边删除,同时从汇点开始退流。具体的,我们可以从汇点向v跑一次最大流,u向原点跑一次最大流,这样一定会退回一些流,使得这条边的影响消失。
这样我们就解决了这个问题,详细过程见(我写了4个小时的)代码。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 10000;
int A[maxn], B[maxn], C[maxn], f[maxn];
int n, s, t, v;
const int inf = 1000000010;
struct edge {
int from;
int to;
int cap;
};
struct haha {
int id;
int Ci;
} cc[maxn];
inline int read() {
char c = getchar();
int f = 1, x = 0;
while (!isdigit(c)) {
if (c == '-')
f = -1;
c = getchar();
}
while (isdigit(c))
x = x * 10 + c - '0', c = getchar();
return x * f;
}
bool cmp(haha a, haha b) { return a.Ci < b.Ci; }
vector<edge> edges;
vector<int> G[maxn];
inline void add_edge(int from, int to, int cap) {
edges.push_back((edge){from, to, cap});
edges.push_back((edge){to, from, 0});
int m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
inline void reaad() {
scanf("%d", &n);
s = 0, t = 2 * n + 1, v = t + 1;
for (int i = 1; i <= n; i++) {
A[i] = read();
}
for (int i = 0; i < v; i++)
G[i].clear();
edges.clear();
for (int i = 1; i <= n; i++)
B[i] = read();
for (int i = 1; i <= n; i++) {
C[i] = read();
cc[i].id = i;
cc[i].Ci = C[i];
}
for (int i = 1; i <= n; i++)
add_edge(i, i + n, B[i]);
for (int i = 1; i <= n; i++)
f[i] = 1;
int ans = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j < i; j++) {
if (A[j] < A[i])
f[i] = max(f[i], f[j] + 1);
}
ans = max(ans, f[i]);
}
for (int i = 1; i <= n; i++) {
if (ans == f[i]) {
add_edge(i + n, t, inf);
}
if (f[i] == 1)
add_edge(s, i, inf);
for (int j = 1; j <= n; j++) {
if (A[j] < A[i] && j < i && f[i] == f[j] + 1)
add_edge(j + n, i, inf);
}
}
}
int dist[maxn], iter[maxn];
inline void bfs(int s) {
memset(dist, -1, sizeof(dist));
dist[s] = 0;
queue<int> q;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
for (int i = 0; i < G[u].size(); i++) {
edge &e = edges[G[u][i]];
if (e.cap > 0 && dist[e.to] == -1) {
dist[e.to] = dist[u] + 1;
q.push(e.to);
}
}
}
}
inline int dfs(int s, int t, int flow) {
if (s == t)
return flow;
for (int &i = iter[s]; i < G[s].size(); i++) {
edge &e = edges[G[s][i]];
if (e.cap > 0 && dist[e.to] > dist[s]) {
int d = dfs(e.to, t, min(e.cap, flow));
if (d > 0) {
e.cap -= d;
edges[G[s][i] ^ 1].cap += d;
return d;
}
}
}
return 0;
}
inline int dinic(int s, int t) {
int flow = 0;
while (1) {
bfs(s);
if (dist[t] == -1)
return flow;
memset(iter, 0, sizeof(iter));
int d;
while (d = dfs(s, t, inf))
flow += d;
}
return flow;
}
int main() {
// freopen("input", "r", stdin);
int T;
scanf("%d", &T);
while (T--) {
reaad();
int ans = dinic(s, t);
int tot = 0;
int rec[maxn];
memset(rec, 0, sizeof(rec));
sort(cc + 1, cc + 1 + n, cmp);
for (int i = 1; i <= n; i++) {
int now = cc[i].id;
int u = now, v = now + n;
bfs(u);
if (dist[v] != -1)
continue;
rec[tot++] = now;
dinic(t, v);
dinic(u, s);
edges[(now - 1) * 2].cap = edges[(now - 1) * 2 + 1].cap = 0;
}
sort(rec, rec + tot);
printf("%d %d\n", ans, tot);
for (int i = 0; i < tot-1; i++) {
printf("%d ", rec[i]);
}
printf("%d\n", rec[tot-1]);
}
return 0;
}
[bzoj3532][Sdoi2014]Lis——拆点最小割+字典序+退流的更多相关文章
- BZOJ.3532.[SDOI2014]LIS(最小割ISAP 退流)
BZOJ 洛谷 \(LIS\)..经典模型? 令\(f_i\)表示以\(i\)结尾的\(LIS\)长度. 如果\(f_i=1\),连边\((S,i,INF)\):如果\(f_i=\max\limits ...
- bzoj千题计划141:bzoj3532: [Sdoi2014]Lis
http://www.lydsy.com/JudgeOnline/problem.php?id=3532 如果没有字典序的限制,那么DP拆点最小割即可 加上字典序的限制: 按c从小到大枚举最小割边集中 ...
- P1345 [USACO5.4]奶牛的电信[拆点+最小割]
题目描述 农夫约翰的奶牛们喜欢通过电邮保持联系,于是她们建立了一个奶牛电脑网络,以便互相交流.这些机器用如下的方式发送电邮:如果存在一个由c台电脑组成的序列a1,a2,...,a(c),且a1与a2相 ...
- UVA1660 电视网络 Cable TV Network[拆点+最小割]
题意翻译 题目大意: 给定一个n(n <= 50)个点的无向图,求它的点联通度.即最少删除多少个点,使得图不连通. 解析 网络瘤拆点最小割. 定理 最大流\(=\)最小割 感性地理解(口胡)一下 ...
- 【Luogu】P2057善意的投票(最小割转最大流)
题目链接 也算水题一道吧,不过Round1感性理解一下就xjb建了个图,40 Round2仔细分析了一会,理性建了个图,90 然后分析了半天……改大数组就A了…… 从S到所有值为1的点连一条inf的边 ...
- ACM/ICPC 之 伞兵-最小割转最大流(POJ3308)
//以行列建点,伞兵位置为单向边-利用对数将乘积转加法 //最小割转最大流 //Time:63Ms Memory:792K #include<iostream> #include<c ...
- BZOJ3532 : [Sdoi2014]Lis
f[i]表示以i为结尾的LIS长度 对于所有f[i]=1的,由S向i连边 对于所有f[i]=maxf的,由i向T连边 对于j<i,a[j]<a[i],且f[j]+1=f[i]的,j向i连边 ...
- POJ 1815 Friendship(最小割+字典序输出割点)
http://poj.org/problem?id=1815 题意: 在现代社会,每个人都有自己的朋友.由于每个人都很忙,他们只通过电话联系.你可以假定A可以和B保持联系,当且仅当:①A知道B的电话号 ...
- hdu3491最小割转最大流+拆点
题意:求最小割,即求最大流即可.此题之关键为拆点(限制在点),每条边都是双向边,注意一下. 未1A原因:在拆点之后添加边的过程中,要注意,出去的是i`,进来的是i,!!所以,写addegde函数时候 ...
随机推荐
- 第十七篇 Python函数之闭包与装饰器
一. 装饰器 装饰器:可以拆解来看,器本质就是函数,装饰就是修饰的意思,所以装饰器的功能就是为其他函数添加附加功能. 装饰器的两个原则: 1. 不修改被修饰函数的源代码 2. 不修改被修饰函数的调用方 ...
- 输出不重复的质因数(C++)
[问题描述] 从键盘上输入一个大于 1 的正整数,输出它所有不等的质因数.(什么是质因数?既是质数,又是因数) [代码展示] # include<iostream>using namesp ...
- iOS-Hello World
尝试练习一些简单的app,能快速上手开发环境和开发流程.基础Start Developing iOS Apps (Swift)https://developer.apple.com/library/c ...
- python xlrd处理表格常用方法
1.导入模块import xlrd2.打开Excel文件读取数据data = xlrd.open_workbook('excelFile.xls')3.使用技巧获取一个工作表 table = data ...
- 目标检测之Faster-RCNN的pytorch代码详解(模型准备篇)
十月一的假期转眼就结束了,这个假期带女朋友到处玩了玩,虽然经济仿佛要陷入危机,不过没关系,要是吃不上饭就看书,吃精神粮食也不错,哈哈!开个玩笑,是要收收心好好干活了,继续写Faster-RCNN的代码 ...
- python 面试题: 列表表达式
[process() for item1 in iterable1 if condition1 for item2 in iterable2 if condition2 For item3 in it ...
- JAVA_四大代码块_普通代码块、构造代码块、静态代码块、同步代码块。
普通代码块 在方法或语句中出现的{}里面的内容就被称为普通代码块,普通代码块和一般的语句执行顺序一样,由他们在代码中出现的次序决定,即--"先出现先执行". 但是不同的普通代码块即 ...
- 软工实践 - 第二十七次作业 Beta 冲刺(5/7)
队名:起床一起肝活队 组长博客:https://www.cnblogs.com/dawnduck/p/10134471.html 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过 ...
- 一个台阶总共有n级,如果一次可以跳1级,也可以跳2级。求总共有 多少总跳法?
首先我们考虑最简单的情况:如果只有1 级台阶,那显然只有一种跳法,如果有2 级台阶,那就有两种跳的方法了:一种是分两次跳,每次跳1 级:另外一种就是一次跳2 级.现在我们再来讨论一般情况:我们把n 级 ...
- 【python】python获取当前日期前后N天或N月的日期
# -*- coding: utf- -*- '''获取当前日期前后N天或N月的日期''' from time import strftime, localtime from datetime imp ...