【洛谷 P4289】[HAOI2008]移动玩具(搜索)
其实这题可以不用状压。。
提供一种新思路。
我们在读入目标棋盘的时候,把当前位置的数和当前棋盘进行比较,如果不一样,如果当前是\(1\),目标是\(0\),那么我们就把当前位置加入\(needmove\)队列里去,否则加入\(needgot\)队列里去。
然后我们两遍循环,对这两个队列两两匹配,构成一个操作,表示把\(needmove\)里的一个位置上的\(1\)移到\(needgot\)里的一个位置上去,同时保存该操作需要的步数,就是这两个位置的曼哈顿距离。
然后进行\(DFS\),枚举所有操作,若这两个位置都没变成目标状态,那么标记一下,进行这个操作,然后回溯。
还可以加一个最优性剪枝,降低时间复杂度。
这样,总能得到最优的方案。
时间复杂度也比较优秀。
码量也很少。
#include <cstdio>
#define Open(s) freopen(s".in","r",stdin);freopen(s".out","w",stdout);
#define Close fclose(stdin);fclose(stdout);
int abs(int x){
return x > 0 ? x : -x;
}
struct Node{
int from, to, dis;
}e[4000];
int a[5][5], b[5][5];
int needmove[20], needgot[20], nm, ng, num, vism[4000], visg[4000], ans = 2147483647;
inline int read(){
char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
return ch - '0';
}
void dfs(int sum, int fi, int last){
if(sum > ans) return;
if(fi == nm){ ans = sum; return; }
for(int i = last; i <= num; ++i)
if(!vism[e[i].from] && !visg[e[i].to]){
vism[e[i].from] = 1;
visg[e[i].to] = 1;
dfs(sum + e[i].dis, fi + 1, i + 1);
vism[e[i].from] = 0; //回溯
visg[e[i].to] = 0;
}
}
int main(){
//Open("move");
for(int i = 1; i <= 4; ++i)
for(int j = 1; j <= 4; ++j)
a[i][j] = read();
for(int i = 1; i <= 4; ++i) //得到两个队列
for(int j = 1; j <= 4; ++j){
b[i][j] = read();
if(a[i][j] != b[i][j])
if(a[i][j] == 1)
needmove[++nm] = i * 10 + j;
else
needgot[++ng] = i * 10 + j;
}
for(int i = 1; i <= nm; ++i) //两两匹配记录所有可能的操作
for(int j = 1; j <= ng; ++j)
e[++num].from = needmove[i], e[num].to = needgot[j],
e[num].dis = abs(needmove[i] / 10 - needgot[j] / 10) + abs(needmove[i] % 10 - needgot[j] % 10);
dfs(0, 0, 1);
printf("%d\n", ans);
//Close;
return 0;
}
【洛谷 P4289】[HAOI2008]移动玩具(搜索)的更多相关文章
- 【洛谷P4289】移动玩具 状压bfs
代码如下 #include <bits/stdc++.h> using namespace std; const int dx[]={0,0,1,-1}; const int dy[]={ ...
- 洛谷 P4290 [HAOI2008]玩具取名
传送门 思路 博客半年没更新了,来更新个博文吧 在\(dsr\)聚聚博客的帮助下,我用半个上午和一个中午的时间苟延残喘地完成了这道题 先是读题目读大半天,最后连个样例都看不懂 之后又是想思路,实在想不 ...
- P4289 [HAOI2008]移动玩具(bfs)
P4289 [HAOI2008]移动玩具 双向bfs+状态压缩+记忆化搜索 双向bfs用于对bfs的优化,每次找到可扩展节点少的一边进行一次bfs,找到的第一个互相接触的点即为最短路径 矩阵范围仅4* ...
- 【题解】洛谷P1120 小木棍(搜索+剪枝+卡常)
洛谷P1120:https://www.luogu.org/problemnew/show/P1120 思路 明显是搜索题嘛 但是这数据增强不是一星半点呐 我们需要N多的剪枝 PS:需要先删去超出50 ...
- 洛谷P1450 [HAOI2008]硬币购物(背包问题,容斥原理)
洛谷题目传送门 我实在是太弱了,第一次正儿八经写背包DP,第一次领会如此巧妙的容斥原理的应用...... 对每次询问都做一遍多重背包,显然T飞,就不考虑了 关键就在于每次询问如何利用重复的信息 我这么 ...
- 【题解】洛谷P1731 [NOI1999] 生日蛋糕(搜索+剪枝)
洛谷P1731:https://www.luogu.org/problemnew/show/P1731 思路 三重剪枝 当前表面积+下一层表面积如果超过最优值就退出 当前体积+下一层体积如果超过总体积 ...
- 洛谷P3195||bzoj1010 [HNOI2008]玩具装箱TOY
洛谷P3195 bzoj1010 设s数组为C的前缀和 首先$ans_i=min_{j<i}\{ans_j+(i-j-1+s_i-s_j-L)^2\}$ (斜率优化dp)参考(复读)https: ...
- 和小哥哥一起刷洛谷(5) 图论之深度优先搜索DFS
关于dfs dfs伪代码: void dfs(s){ for(int i=0;i<s的出度;i++){ if(used[i]为真) continue; used[i]=1; dfs(i); } ...
- 和小哥哥一起刷洛谷(4) 图论之广度优先搜索BFS
关于bfs: 你怎么会连这个都不知道!!!自己好好谷歌一下!!!(其实我也刚学) bfs伪代码: while(队列非空){ 取出队首元素u; 弹出队首元素; u染色为黑色; for(int i=0;i ...
- 洛谷P4289 移动玩具 HAOI2008 搜索+状压
正解:状压 解题报告: 先,放下传送门QwQ 说真的我jio得这题不管是思路还是实现上,都还是有一定难度的?然后就看到神仙hl博客里一句"太水了不讲了"就过掉了,,,好的趴太强辽Q ...
随机推荐
- Develop Android Game Using Cocos2d-x
0. Environment Windows 7 x64Visual Studio 2013adt-bundle-windows-x86 (http://developer.android.com/s ...
- 转MySQL详解--索引
写在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页面大小为4K,并存储100条记录.如果没有索引,查询将 ...
- 【WPF】 前言
[WPF] 前言 前段时间项目中用到了WPF,就边学边做项目,一个项目做下来有点感触,以此记录. 以前也开发过多个C/S项目, 一直都是用的Winform,Winform 做些简单的界面很方便,基本只 ...
- [网站日志]今天早上遭遇的CPU 100%情况
今天早上9:06左右,Windows性能监视器监测到主站的Web服务器出现了CPU 100%的情况,伴随着Requests/Sec的上升,详见下图. 上图中红色线条表示的是%Processor Tim ...
- Nullable可空类型
一个Nullable类型就是基本类型加上一个"是否为null指示器"的合成类型.对于一个类型,如果既可以给他分配一个值,也可以给它分配null引用,我们就说这个类型是可空的. 可空 ...
- python正则-字符串处理,主要用于处理请求参数格式为application/x-www-form-urlencoded的表单数据
#当提交的表单数据格式为application/x-www-form-urlencoded,直接从浏览器复制出来的格式是str_lin(chrome,也是最常见的)或者str_in2(火狐)这两种格式 ...
- Oracle数据库抽数神器toad
使用了toad,再也不怕抽数成各种 文件格式,以及添加分割的数据文件了.百度搜toad,
- 数据挖掘算法:k-means算法的C++实现
(期末考试要到了,所以比较粗糙,请各位读者理解..) 一. 概念 k-means是基于原型的.划分的聚类技术.它试图发现用户指定个数(K)的簇(由质心代表).K-means算法接受输入量K,然后 ...
- [leetcode-644-Maximum Average Subarray II]
Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...
- await和async再学习
await太不容易理解了,自己常常迷惑,不知道该怎么用. 文章:探索c#之Async.Await剖析 这篇文章,有一个很清晰的描述: 使用Async标记方法Async1为异步方法,用Await标记Ge ...