POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】
链接:
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 16244 | Accepted: 5656 |
Description
Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency.
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR.
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges,
and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively.
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative
sum of money while making his operations.
Input
of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103.
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102.
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations
will be less than 104.
Output
Sample Input
3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00
Sample Output
YES
Source
题意:
兑换货币有一定的兑换率 r 和佣金 c
如果货币 A 兑换 B 兑换率是 r ,佣金是 c
那么value 个 A 可以换成 (value-c)*r 个 B
每个兑换点能两种货币双向兑换,但是兑换比例和佣金不同
输入时注意一下
问:最后如果能够使得自己的钱变多,则输出 YES
否则输出 NO
算法:bellman_ford 判断是否有正环
思路:
看是否有正环,如果有正环,则说明可以通过这个正环
使得自己的钱不断增多。
code:
| 1860 | Accepted | 140K | 32MS | C++ | 2217B |
/***********************************************************
A Accepted 140 KB 0 ms C++ 1454 B
题意:一个城市有 N 种货币, 有 M 个兑换点
兑换货币有一定的兑换率 r 和佣金 c
如果货币 A 兑换 B 兑换率是 r ,佣金是 c
那么value 个 A 可以换成 (value-c)*r 个 B
每个兑换点能两种货币双向兑换,但是兑换比例和佣金不同
输入时注意一下
问:最后如果能够使得自己的钱变多,则输出 YES
否则输出 NO
算法:bellman_ford 判断是否有正环
思路:直接按照输入顺序加双向边后,套用 bellman_ford模板
看是否有正环,如果有正环,则说明可以通过这个正环
使得自己的钱不断增多。
***********************************************************/
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; const int maxn = 110;
double d[maxn];
int n, m, index; //index 表示开始拥有的货币的编号
double money; struct Edge{
int u,v;
double r,c; //r:兑换率; c:佣金; 如果拿value个u换v ,则得到的 v :(value-c)*r
}edge[maxn*2]; bool bellman_ford()
{
for(int i = 0; i <= n; i++) d[i] = 0; //初始没有其他货币
d[index] = money; //开始拥有的货币 for(int i = 1; i < n; i++) //n-1 轮松弛操作
{
bool flag = true; //标记是否松弛
for(int j = 0; j < m; j++)
{
int u = edge[j].u;
int v = edge[j].v;
double r = edge[j].r;
double c = edge[j].c; if(d[v] < (d[u]-c)*r) //松弛【也就是走这条路,钱变多】
{
d[v] = (d[u]-c)*r;
flag = false;
}
} if(flag) return false; //当前都无法松弛了,肯定没有正环了,直接返回
} for(int i = 0; i < m; i++) //判断是否能继续松弛,如果能,就说明有正环
{
if(d[edge[i].v] < (d[edge[i].u] - edge[i].c)*edge[i].r)
return true;
}
return false;
} int main()
{
while(scanf("%d%d%d%lf", &n,&m,&index,&money) != EOF)
{
int k = 0;
int u,v;
double r1,c1,r2,c2;
for(int i = 1; i <= m; i++) //双向兑换
{
scanf("%d%d%lf%lf%lf%lf", &u,&v,&r1,&c1,&r2,&c2);
edge[k].u = u;
edge[k].v = v;
edge[k].r = r1;
edge[k++].c = c1; edge[k].u = v;
edge[k].v = u;
edge[k].r = r2;
edge[k++].c = c2;
}
m = 2*m;
if(bellman_ford()) printf("YES\n"); //如果有正环
else printf("NO\n"); }
}
POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】的更多相关文章
- poj1860 Currency Exchange(spfa判断是否存在正环)
题意:有m个货币交换点,每个点只能有两种货币的互相交换,且要给佣金,给定一开始的货币类型和货币数量,问若干次交换后能否让钱增加. 思路:spfa求最长路,判断是否存在正环,如果存在则钱可以在环中一直增 ...
- poj - 1860 Currency Exchange Bellman-Ford 判断正环
Currency Exchange POJ - 1860 题意: 有许多货币兑换点,每个兑换点仅支持两种货币的兑换,兑换有相应的汇率和手续费.你有s这个货币 V 个,问是否能通过合理地兑换货币,使得你 ...
- POJ 1860 Currency Exchange(最短路&spfa正权回路)题解
题意:n种钱,m种汇率转换,若ab汇率p,手续费q,则b=(a-q)*p,你有第s种钱v数量,问你能不能通过转化让你的s种钱变多? 思路:因为过程中可能有负权值,用spfa.求是否有正权回路,dis[ ...
- 最短路(Bellman_Ford) POJ 1860 Currency Exchange
题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...
- POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)
POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...
- POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告
三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...
- POJ 1860 Currency Exchange 最短路+负环
原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Tota ...
- POJ 1860 Currency Exchange【bellman-Ford模板题】
传送门:http://poj.org/problem?id=1860 题意:给出每两种货币之间交换的手续费和汇率,求出从当前货币s开始交换回到s,能否使本金增多. 思路:bellman-Ford模板题 ...
- POJ 1860 Currency Exchange(Bellman-Ford)
https://vjudge.net/problem/POJ-1860 题意: 有多种货币,可以交换,有汇率并且需要支付手续费,判断是否能通过不断交换使本金变多. 思路: Bellman-Ford算法 ...
随机推荐
- PHP中单引号双引号使用原则
PHP中单引号双引号使用原则 1.PHP中尽量用单引号,HTML代码全部用双引号 2.在包含变量的时候,用双引号可以简化操作 3.复杂的情况下用大括号包起来 4 PHP引号还有一个用处 ...
- Activity设置切换动画时黑屏问题的解决
//当这么设置的时候.打开Acticity的时候会黑屏一下 overridePendingTransition(R.anim.activity_open,0); //改成例如以下代码 完美解决这个问题 ...
- Android - 错误:Unable to instantiate application
错误:Unable to instantiate application 本文地址: http://blog.csdn.net/caroline_wendy 错误:java.lang.RuntimeE ...
- spring事务管理源码解析--加了@Transactional注解后Spring究竟为我们做了哪些事情?
大家都知道事务管理是基于AOP的,对AOP还不了解的请自行百度. 实现一个事务需要以下几步:1.获取数据库连接 2.执行数据库操作 3.如果2步骤发生异常就回滚,否则就提交 4.释放资源. 然后 ...
- RapidIOIP核的验证方法研究_王玉欢
RapidIOIP核的验证方法研究_王玉欢 https://wenku.baidu.com/view/0fd3c925d4d8d15abf234e73.html
- 14. First Position of Target 【easy】
14. First Position of Target [easy] For a given sorted array (ascending order) and a targetnumber, f ...
- c++ why can't class template hide its implementation in cpp file?
类似的问题还有: why can't class template use Handle Class Pattern to hide its implementation? || why there ...
- 分布式服务框架 Zookeeper(四)官方编程指南
握草,是不是加了官方两个字就可以唬人了. 使用ZooKeeper开发分布式应用 简介 这篇文档是为了那些想利用ZooKeeper的协调服务来构建分布式应用的开发人员而写滴,不相干的走一边去哈.在这儿有 ...
- 设计模式中类的关系之依赖关系(Dependence)
依赖关系是一种使用关系,特定事物的改变有可能会影响到使用该事物的其他事物,在需要表示一个事物使用另一个事物时使用依赖关系.可以简单的理解,就是一个类A使用到了另一个类B,而这种使用关系是具有偶然性的. ...
- Cocos2dx 场景切换动画
1.http://www.cnblogs.com/linux-ios/archive/2013/04/09/3009292.html