基于pyecharts的中医药知识图谱可视化
基于pyecharts的中医药知识图谱可视化
关键词: pyecharts;可视化;中医药知识图谱
摘要: 数据可视化是一种直观展示数据结果和变化情况的方法,可视化有助于知识发现与应用。Neo4j数据库对于知识图谱的展示形式过于单调。因此,本文基于pyecharts对当前处理的中药知识图谱数据进行分析与可视化。以利用图形传递和表达更清晰的中药知识图谱信息,发掘有潜在价值的内容。
本文目录
1、数据准备
本文数据分析将基于前期准备的中药材知识图谱数据。特别的,本次在中药材知识图谱中增加了“归经”关系,数据已经更新在github中。
开源数据地址:
https://github.com/fengxi177/Knowlegde_Graph_TCM https://gitee.com/fengxi177/Knowlegde_Graph_TCM
2、基于pyecharts的知识图谱可视化
本文将基于pyecharts框架,对中药材知识图谱进行“力导图”和“环形分布”可视化,同时,对中药材地理分布、来源和别名关系进行分析与可视化。
2.1 pyecharts简介
Apache ECharts 是一个由百度开源的数据可视化工具,有很多常见图表设计的api,操作简洁方便,如关系图、地图、折线图、散点图等可视化api。
api详细可访问:
https://github.com/pyecharts/pyecharts。
2.2 中药材知识图谱可视化
前文自顶向下构建中药知识图谱初探已经介绍了中药材知识图谱的构建和neo4j可视化过程,接下来将对该图谱数据利用pyecharts进行可视化。
pyecharts关系图api和具体参数配置可参考示例文档:
https://gallery.pyecharts.org/#/Graph/README。
说明: 本文所有数据分析结果仅限于所收集数据情况。
少量数据的中药知识图谱-环形图

少量数据的中药知识图谱-环形图(部分节点展示图1)

少量数据的中药知识图谱-环形图(部分节点展示图2)

少量数据的中药知识图谱-力导图

较多数据的知识图谱可视化效果


2.3 中药材知识图谱分析结果可视化
(1)中药材分布情况可视化



(2)中药材来源数据可视化


(3)中药材别名数据可视化
经数据分析发现:有别名的中药材占比:0.7591,没有别名的中药材占比:0.2409。
中药材别名数量与对应中药材数量关系图如下。

别名最多的中药是“地锦草”,有57个别名,其关系图如下。


2.4 中药术语知识图谱可视化
中医术语知识为层次结构,其树形图展示如下。
环形树图(部分节点展开)

自底向上的树图(部分节点展开)

3、其他可视化工具
对于知识图谱数据可视化,还可利用D3.js创建更复杂场景的可视化结果。同时,可利用共现网络分析工具cytoscape、gephi等探索更多的数据价值。
4、总结
本文基于pyecharts对已有知识图谱进行了数据分析与可视化展示。

欢迎关注公众号:实用自然语言处理
主要参考文献:
[1] https://github.com/pyecharts/pyecharts
原文首发于微信公众号:实用自然语言处理
基于pyecharts的中医药知识图谱可视化的更多相关文章
- 百度大脑UNIT3.0详解之知识图谱与对话
如今,越来越多的企业想要在电商客服.法律顾问等领域做一套包含行业知识的智能对话系统,而行业或领域知识的积累.构建.抽取等工作对于企业来说是个不小的难题,百度大脑UNIT3.0推出「我的知识」版块专门为 ...
- 知识图谱如何运用于RecomSys
将知识图谱作为辅助信息引入到推荐系统中可以有效地解决传统推荐系统存在的稀疏性和冷启动问题,近几年有很多研究人员在做相关的工作.目前,将知识图谱特征学习应用到推荐系统中主要通过三种方式——依次学习.联合 ...
- 知识图谱顶刊综述 - (2021年4月) A Survey on Knowledge Graphs: Representation, Acquisition, and Applications
知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知 ...
- GitHub:如何构建一个股票市场知识图谱?(附代码&链接)
来源:专知 本文约 600007 董事⻓/董事 高燕 女 60 600007 执⾏董事 刘永政 男 50 600008 董事⻓/董事 ··· ··· ··· ··· ··· 注:建议表头最好用相应的英 ...
- 知识图谱推理与实践 (2) -- 基于jena实现规则推理
本章,介绍 基于jena的规则引擎实现推理,并通过两个例子介绍如何coding实现. 规则引擎概述 jena包含了一个通用的规则推理机,可以在RDFS和OWL推理机使用,也可以单独使用. 推理机支持在 ...
- 知识图谱实体对齐1:基于平移(translation)的方法
1 导引 在知识图谱领域,最重要的任务之一就是实体对齐 [1](entity alignment, EA).实体对齐旨在从不同的知识图谱中识别出表示同一个现实对象的实体.如下图所示,知识图谱\(\ma ...
- 知识图谱实体对齐2:基于GNN嵌入的方法
知识图谱实体对齐2:基于GNN嵌入的方法 1 导引 我们在上一篇博客<知识图谱实体对齐1:基于平移(translation)嵌入的方法>中介绍了如何对基于平移嵌入+对齐损失来完成知识图谱中 ...
- 知识图谱-生物信息学-医学顶刊论文(Bioinformatics-2021)-MSTE: 基于多向语义关系的有效KGE用于多药副作用预测
MSTE: 基于多向语义关系的有效KGE用于多药副作用预测 论文标题: Effective knowledge graph embeddings based on multidirectional s ...
- 知识图谱顶会论文(ACL-2022) ACL-SimKGC:基于PLM的简单对比KGC
12.(2022.5.4)ACL-SimKGC:基于PLM的简单对比KGC 12.(2022.5.4)ACL-SimKGC:基于PLM的简单对比KGC 摘要 1.引言 2.相关工作 2.1 知识图补全 ...
随机推荐
- Kubernetes 安全
RBAC 权限控制 对资源对象的操作都是通过 APIServer 进行的,那么集群是怎样知道我们的请求就是合法的请求呢?这个就需要了解 Kubernetes 中另外一个非常重要的知识点了:RBAC(基 ...
- kubectl top命令
kubectl top命令可显⽰节点和Pod对象的资源使⽤信息,它依赖于集群中的资源指标API来收集各项指标数据.它包含有node和pod两个⼦命令,可分别⽤于显⽰Node对象和Pod对象的相关资源占 ...
- Django环境安装
1.安装Django # 自动安装PyPi提供的最新版本 pip install django # 安装指定版本 pip install django==2.2 # 验证安装 >>> ...
- MongoDB分片集群中配置参数说明
replication: #副本集的名称 replSetName: myshardrs01 sharding: #分片角色 clusterRole: shardsvr sharding.clust ...
- Elasticsearch:Split index API - 把一个大的索引分拆成更多分片
文章转载自:https://blog.csdn.net/UbuntuTouch/article/details/108960950
- day47-JDBC和连接池03
JDBC和连接池03 8.事务 8.1事务介绍 基本介绍 JDBC程序中当一个Connection对象创建时,默认情况下是自动提交事务:每次执行一个SQL语句时,如果执行成功,就会向数据库自动提交,而 ...
- Vue学习之--------Vue中过滤器(filters)的使用(代码实现)(2022/7/18)
1.过滤器 1.1 概念 过滤器: 定义:对要显示的数据进行特定格式化后再显示(适用于一些简单逻辑的处理). 语法: 1.注册过滤器:Vue.filter(name,callback) 或 new V ...
- 7 步保障 Kubernetes 集群安全
随着 Kubernetes 的发展和改进,新的安全威胁和风险也逐渐向 K8s 转移,因此 K8s 安全性变得越来越重要,而保护 K8s 集群已成为 DevOps 团队不容忽视的重要任务.K8s 有多种 ...
- 禁忌搜索算法TSA 旅行商问题TSP python
import math import random import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot ...
- .Net 文件导出下载
//1.首先要有文件路径 2.要知道文件扩展名 3.根据扩展名在Provider Map对应的contentType 4.return FileSteam public IActionResult E ...