Hnswlib - fast approximate nearest neighbor search

Header-only C++ HNSW implementation with python bindings.

NEWS:

  • Hnswlib is now 0.5.2. Bugfixes - thanks @marekhanus for fixing the missing arguments, adding support for python 3.8, 3.9 in Travis, improving python wrapper and fixing typos/code style; @apoorv-sharma for fixing the bug int the insertion/deletion logic; @shengjun1985 for simplifying the memory reallocation logic; @TakaakiFuruse for improved description of add_items@psobotfor improving error handling; @ShuAiii for reporting the bug in the python interface

  • Hnswlib is now 0.5.0. Added support for pickling indices, support for PEP-517 and PEP-518 building, small speedups, bug and documentation fixes. Many thanks to @dbespalov@dyashuni@groodt,@uestc-lfs@vinnitu@fabiencastan@JinHai-CN@js1010!

  • Thanks to Apoorv Sharma @apoorv-sharma, hnswlib now supports true element updates (the interface remained the same, but when you the performance/memory should not degrade as you update the element embeddings).

  • Thanks to Dmitry @2ooom, hnswlib got a boost in performance for vector dimensions that are not multiple of 4

  • Thanks to Louis Abraham (@louisabraham) hnswlib can now be installed via pip!

Highlights:

  1. Lightweight, header-only, no dependencies other than C++ 11.
  2. Interfaces for C++, python and R (https://github.com/jlmelville/rcpphnsw).
  3. Has full support for incremental index construction. Has support for element deletions (currently, without actual freeing of the memory).
  4. Can work with custom user defined distances (C++).
  5. Significantly less memory footprint and faster build time compared to current nmslib's implementation.

Description of the algorithm parameters can be found in ALGO_PARAMS.md.

Python bindings

Supported distances:

Distance parameter Equation
Squared L2 'l2' d = sum((Ai-Bi)^2)
Inner product 'ip' d = 1.0 - sum(Ai*Bi)
Cosine similarity 'cosine' d = 1.0 - sum(Ai*Bi) / sqrt(sum(Ai*Ai) * sum(Bi*Bi))

Note that inner product is not an actual metric. An element can be closer to some other element than to itself. That allows some speedup if you remove all elements that are not the closest to themselves from the index.

For other spaces use the nmslib library https://github.com/nmslib/nmslib.

Short API description

  • hnswlib.Index(space, dim) creates a non-initialized index an HNSW in space space with integer dimension dim.

hnswlib.Index methods:

  • init_index(max_elements, M = 16, ef_construction = 200, random_seed = 100) initializes the index from with no elements.

    • max_elements defines the maximum number of elements that can be stored in the structure(can be increased/shrunk).
    • ef_construction defines a construction time/accuracy trade-off (see ALGO_PARAMS.md).
    • M defines tha maximum number of outgoing connections in the graph (ALGO_PARAMS.md).
  • add_items(data, ids, num_threads = -1) - inserts the data(numpy array of vectors, shape:N*dim) into the structure.

    • num_threads sets the number of cpu threads to use (-1 means use default).
    • ids are optional N-size numpy array of integer labels for all elements in data.
      • If index already has the elements with the same labels, their features will be updated. Note that update procedure is slower than insertion of a new element, but more memory- and query-efficient.
    • Thread-safe with other add_items calls, but not with knn_query.
  • mark_deleted(label) - marks the element as deleted, so it will be omitted from search results.

  • resize_index(new_size) - changes the maximum capacity of the index. Not thread safe with add_items and knn_query.

  • set_ef(ef) - sets the query time accuracy/speed trade-off, defined by the ef parameter ( ALGO_PARAMS.md). Note that the parameter is currently not saved along with the index, so you need to set it manually after loading.

  • knn_query(data, k = 1, num_threads = -1) make a batch query for k closest elements for each element of the

    • data (shape:N*dim). Returns a numpy array of (shape:N*k).
    • num_threads sets the number of cpu threads to use (-1 means use default).
    • Thread-safe with other knn_query calls, but not with add_items.
  • load_index(path_to_index, max_elements = 0) loads the index from persistence to the uninitialized index.

    • max_elements(optional) resets the maximum number of elements in the structure.
  • save_index(path_to_index) saves the index from persistence.

  • set_num_threads(num_threads) set the default number of cpu threads used during data insertion/querying.

  • get_items(ids) - returns a numpy array (shape:N*dim) of vectors that have integer identifiers specified in ids numpy vector (shape:N). Note that for cosine similarity it currently returns normalized vectors.

  • get_ids_list() - returns a list of all elements' ids.

  • get_max_elements() - returns the current capacity of the index

  • get_current_count() - returns the current number of element stored in the index

Read-only properties of hnswlib.Index class:

  • space - name of the space (can be one of "l2", "ip", or "cosine").

  • dim - dimensionality of the space.

  • M - parameter that defines the maximum number of outgoing connections in the graph.

  • ef_construction - parameter that controls speed/accuracy trade-off during the index construction.

  • max_elements - current capacity of the index. Equivalent to p.get_max_elements().

  • element_count - number of items in the index. Equivalent to p.get_current_count().

Properties of hnswlib.Index that support reading and writin

  • ef - parameter controlling query time/accuracy trade-off.

  • num_threads - default number of threads to use in add_items or knn_query. Note that calling p.set_num_threads(3) is equivalent to p.num_threads=3.

Python bindings examples

import hnswlib
import numpy as np
import pickle dim = 128
num_elements = 10000 # Generating sample data
data = np.float32(np.random.random((num_elements, dim)))
ids = np.arange(num_elements) # Declaring index
p = hnswlib.Index(space = 'l2', dim = dim) # possible options are l2, cosine or ip # Initializing index - the maximum number of elements should be known beforehand
p.init_index(max_elements = num_elements, ef_construction = 200, M = 16) # Element insertion (can be called several times):
p.add_items(data, ids) # Controlling the recall by setting ef:
p.set_ef(50) # ef should always be > k # Query dataset, k - number of closest elements (returns 2 numpy arrays)
labels, distances = p.knn_query(data, k = 1) # Index objects support pickling
# WARNING: serialization via pickle.dumps(p) or p.__getstate__() is NOT thread-safe with p.add_items method!
# Note: ef parameter is included in serialization; random number generator is initialized with random_seed on Index load
p_copy = pickle.loads(pickle.dumps(p)) # creates a copy of index p using pickle round-trip ### Index parameters are exposed as class properties:
print(f"Parameters passed to constructor: space={p_copy.space}, dim={p_copy.dim}")
print(f"Index construction: M={p_copy.M}, ef_construction={p_copy.ef_construction}")
print(f"Index size is {p_copy.element_count} and index capacity is {p_copy.max_elements}")
print(f"Search speed/quality trade-off parameter: ef={p_copy.ef}")

An example with updates after serialization/deserialization:

import hnswlib
import numpy as np dim = 16
num_elements = 10000 # Generating sample data
data = np.float32(np.random.random((num_elements, dim))) # We split the data in two batches:
data1 = data[:num_elements // 2]
data2 = data[num_elements // 2:] # Declaring index
p = hnswlib.Index(space='l2', dim=dim) # possible options are l2, cosine or ip # Initializing index
# max_elements - the maximum number of elements (capacity). Will throw an exception if exceeded
# during insertion of an element.
# The capacity can be increased by saving/loading the index, see below.
#
# ef_construction - controls index search speed/build speed tradeoff
#
# M - is tightly connected with internal dimensionality of the data. Strongly affects memory consumption (~M)
# Higher M leads to higher accuracy/run_time at fixed ef/efConstruction p.init_index(max_elements=num_elements//2, ef_construction=100, M=16) # Controlling the recall by setting ef:
# higher ef leads to better accuracy, but slower search
p.set_ef(10) # Set number of threads used during batch search/construction
# By default using all available cores
p.set_num_threads(4) print("Adding first batch of %d elements" % (len(data1)))
p.add_items(data1) # Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data1, k=1)
print("Recall for the first batch:", np.mean(labels.reshape(-1) == np.arange(len(data1))), "\n") # Serializing and deleting the index:
index_path='first_half.bin'
print("Saving index to '%s'" % index_path)
p.save_index("first_half.bin")
del p # Re-initializing, loading the index
p = hnswlib.Index(space='l2', dim=dim) # the space can be changed - keeps the data, alters the distance function. print("\nLoading index from 'first_half.bin'\n") # Increase the total capacity (max_elements), so that it will handle the new data
p.load_index("first_half.bin", max_elements = num_elements) print("Adding the second batch of %d elements" % (len(data2)))
p.add_items(data2) # Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data, k=1)
print("Recall for two batches:", np.mean(labels.reshape(-1) == np.arange(len(data))), "\n")

Bindings installation

You can install from sources:

apt-get install -y python-setuptools python-pip
git clone https://github.com/nmslib/hnswlib.git
cd hnswlib
pip install .

or you can install via pip: pip install hnswlib

Other implementations

Contributing to the repository

Contributions are highly welcome!

Please make pull requests against the develop branch.

200M SIFT test reproduction

To download and extract the bigann dataset (from root directory):

python3 download_bigann.py

To compile:

mkdir build
cd build
cmake ..
make all

To run the test on 200M SIFT subset:

./main

The size of the BigANN subset (in millions) is controlled by the variable subset_size_millions hardcoded in sift_1b.cpp.

hnsw的更多相关文章

  1. Xamarin.iOS开发初体验

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAKwAAAA+CAIAAAA5/WfHAAAJrklEQVR4nO2c/VdTRxrH+wfdU84pW0

随机推荐

  1. EF core 反向工程 连接字符串

    Scaffold-DbContext 'Data Source=.;Initial Catalog=DB;User ID=sa;Password=1;Integrated Security=true; ...

  2. java学习日记20230226-java环境搭建及运行机制

    JDK安装 配置环境变量: 当执行的程序在当前目录不存在时,windows去系统path环境变量里面进行查找,如果没有找到报错不存在该命令. 我的电脑-属性-高级系统设置--环境变量 增加JAVA_H ...

  3. 1223. 掷骰子模拟 (Hard)

    问题描述 1223. 掷骰子模拟 (Hard) 有一个骰子模拟器会每次投掷的时候生成一个 1 到 6 的随机数. 不过我们在使用它时有个约束,就是使得投掷骰子时, 连续 掷出数字 i 的次数不能超过 ...

  4. Windows 从头搭建c++ Eigen 库

    虽然目前还在用python实现自己的算法,但是还是有点略微不满足,算法迟早有一天全从python搬到c++上,先给自己立个flag. 前言 由于本人做一些模型的搭建和计算,矩阵运算必然是少不了的,本人 ...

  5. vscode的python开发环境搭建,环境变量支持终端命令行(执行当前

    vscode的python开发环境设置 安装vscode,这里不介绍了 安装插件 在${workspaceFolder}的目录下,新建.vscode文件夹(或者修改一下配置,也可以自动生成该文件夹) ...

  6. C++ MFC字符转换

    创建Win32 空项目 字符说明:国外 1个字符对应1个字节   多字节 中文  1个字符对应对个字节  宽字节   Unicode  utf-8  3个   GBK  2个 多字节转为 宽字节    ...

  7. VUE学习-自定义指令

    自定义指令 有的情况下,你仍然需要对普通 DOM 元素进行底层操作,这时候就会用到自定义指令. <div id="directive-demo"> <input ...

  8. Centos7.6centOS7.8多网卡多IP配置

    1.进入网卡配置文件 cd /etc/sysconfig/network-scripts/2.创建新网卡的配置文件 ifcfg-eth1 cp ifcfg-eth0 ifcfg-eth1这样副网卡配置 ...

  9. vue项目使用vue-amap调用高德地图api详细步骤

    想要的效果如下 : 高德地图 && 信息窗体 步骤一: 申请高德key 高德开放平台 | 高德地图API (amap.com) (可参考博客:   [996]如何申请高德地图用户Key ...

  10. 001.shell-每日练习一文件创建

    001.shell-每日练习一文件创建 0x00.练习要求 在/usr/local/uz654目录下,按照xxxx-xx-xx生成一个文件,如:2023-02-11.log 把磁盘的使用情况写到这个文 ...