hnsw
Hnswlib - fast approximate nearest neighbor search
Header-only C++ HNSW implementation with python bindings.
NEWS:
Hnswlib is now 0.5.2. Bugfixes - thanks @marekhanus for fixing the missing arguments, adding support for python 3.8, 3.9 in Travis, improving python wrapper and fixing typos/code style; @apoorv-sharma for fixing the bug int the insertion/deletion logic; @shengjun1985 for simplifying the memory reallocation logic; @TakaakiFuruse for improved description of
add_items
; @psobotfor improving error handling; @ShuAiii for reporting the bug in the python interfaceHnswlib is now 0.5.0. Added support for pickling indices, support for PEP-517 and PEP-518 building, small speedups, bug and documentation fixes. Many thanks to @dbespalov, @dyashuni, @groodt,@uestc-lfs, @vinnitu, @fabiencastan, @JinHai-CN, @js1010!
Thanks to Apoorv Sharma @apoorv-sharma, hnswlib now supports true element updates (the interface remained the same, but when you the performance/memory should not degrade as you update the element embeddings).
Thanks to Dmitry @2ooom, hnswlib got a boost in performance for vector dimensions that are not multiple of 4
Thanks to Louis Abraham (@louisabraham) hnswlib can now be installed via pip!
Highlights:
- Lightweight, header-only, no dependencies other than C++ 11.
- Interfaces for C++, python and R (https://github.com/jlmelville/rcpphnsw).
- Has full support for incremental index construction. Has support for element deletions (currently, without actual freeing of the memory).
- Can work with custom user defined distances (C++).
- Significantly less memory footprint and faster build time compared to current nmslib's implementation.
Description of the algorithm parameters can be found in ALGO_PARAMS.md.
Python bindings
Supported distances:
Distance | parameter | Equation |
---|---|---|
Squared L2 | 'l2' | d = sum((Ai-Bi)^2) |
Inner product | 'ip' | d = 1.0 - sum(Ai*Bi) |
Cosine similarity | 'cosine' | d = 1.0 - sum(Ai*Bi) / sqrt(sum(Ai*Ai) * sum(Bi*Bi)) |
Note that inner product is not an actual metric. An element can be closer to some other element than to itself. That allows some speedup if you remove all elements that are not the closest to themselves from the index.
For other spaces use the nmslib library https://github.com/nmslib/nmslib.
Short API description
hnswlib.Index(space, dim)
creates a non-initialized index an HNSW in spacespace
with integer dimensiondim
.
hnswlib.Index
methods:
init_index(max_elements, M = 16, ef_construction = 200, random_seed = 100)
initializes the index from with no elements.max_elements
defines the maximum number of elements that can be stored in the structure(can be increased/shrunk).ef_construction
defines a construction time/accuracy trade-off (see ALGO_PARAMS.md).M
defines tha maximum number of outgoing connections in the graph (ALGO_PARAMS.md).
add_items(data, ids, num_threads = -1)
- inserts thedata
(numpy array of vectors, shape:N*dim
) into the structure.num_threads
sets the number of cpu threads to use (-1 means use default).ids
are optional N-size numpy array of integer labels for all elements indata
.- If index already has the elements with the same labels, their features will be updated. Note that update procedure is slower than insertion of a new element, but more memory- and query-efficient.
- Thread-safe with other
add_items
calls, but not withknn_query
.
mark_deleted(label)
- marks the element as deleted, so it will be omitted from search results.resize_index(new_size)
- changes the maximum capacity of the index. Not thread safe withadd_items
andknn_query
.set_ef(ef)
- sets the query time accuracy/speed trade-off, defined by theef
parameter ( ALGO_PARAMS.md). Note that the parameter is currently not saved along with the index, so you need to set it manually after loading.knn_query(data, k = 1, num_threads = -1)
make a batch query fork
closest elements for each element of thedata
(shape:N*dim
). Returns a numpy array of (shape:N*k
).num_threads
sets the number of cpu threads to use (-1 means use default).- Thread-safe with other
knn_query
calls, but not withadd_items
.
load_index(path_to_index, max_elements = 0)
loads the index from persistence to the uninitialized index.max_elements
(optional) resets the maximum number of elements in the structure.
save_index(path_to_index)
saves the index from persistence.set_num_threads(num_threads)
set the default number of cpu threads used during data insertion/querying.get_items(ids)
- returns a numpy array (shape:N*dim
) of vectors that have integer identifiers specified inids
numpy vector (shape:N
). Note that for cosine similarity it currently returns normalized vectors.get_ids_list()
- returns a list of all elements' ids.get_max_elements()
- returns the current capacity of the indexget_current_count()
- returns the current number of element stored in the index
Read-only properties of hnswlib.Index
class:
space
- name of the space (can be one of "l2", "ip", or "cosine").dim
- dimensionality of the space.M
- parameter that defines the maximum number of outgoing connections in the graph.ef_construction
- parameter that controls speed/accuracy trade-off during the index construction.max_elements
- current capacity of the index. Equivalent top.get_max_elements()
.element_count
- number of items in the index. Equivalent top.get_current_count()
.
Properties of hnswlib.Index
that support reading and writin
ef
- parameter controlling query time/accuracy trade-off.num_threads
- default number of threads to use inadd_items
orknn_query
. Note that callingp.set_num_threads(3)
is equivalent top.num_threads=3
.
Python bindings examples
import hnswlib
import numpy as np
import pickle dim = 128
num_elements = 10000 # Generating sample data
data = np.float32(np.random.random((num_elements, dim)))
ids = np.arange(num_elements) # Declaring index
p = hnswlib.Index(space = 'l2', dim = dim) # possible options are l2, cosine or ip # Initializing index - the maximum number of elements should be known beforehand
p.init_index(max_elements = num_elements, ef_construction = 200, M = 16) # Element insertion (can be called several times):
p.add_items(data, ids) # Controlling the recall by setting ef:
p.set_ef(50) # ef should always be > k # Query dataset, k - number of closest elements (returns 2 numpy arrays)
labels, distances = p.knn_query(data, k = 1) # Index objects support pickling
# WARNING: serialization via pickle.dumps(p) or p.__getstate__() is NOT thread-safe with p.add_items method!
# Note: ef parameter is included in serialization; random number generator is initialized with random_seed on Index load
p_copy = pickle.loads(pickle.dumps(p)) # creates a copy of index p using pickle round-trip ### Index parameters are exposed as class properties:
print(f"Parameters passed to constructor: space={p_copy.space}, dim={p_copy.dim}")
print(f"Index construction: M={p_copy.M}, ef_construction={p_copy.ef_construction}")
print(f"Index size is {p_copy.element_count} and index capacity is {p_copy.max_elements}")
print(f"Search speed/quality trade-off parameter: ef={p_copy.ef}")
An example with updates after serialization/deserialization:
import hnswlib
import numpy as np dim = 16
num_elements = 10000 # Generating sample data
data = np.float32(np.random.random((num_elements, dim))) # We split the data in two batches:
data1 = data[:num_elements // 2]
data2 = data[num_elements // 2:] # Declaring index
p = hnswlib.Index(space='l2', dim=dim) # possible options are l2, cosine or ip # Initializing index
# max_elements - the maximum number of elements (capacity). Will throw an exception if exceeded
# during insertion of an element.
# The capacity can be increased by saving/loading the index, see below.
#
# ef_construction - controls index search speed/build speed tradeoff
#
# M - is tightly connected with internal dimensionality of the data. Strongly affects memory consumption (~M)
# Higher M leads to higher accuracy/run_time at fixed ef/efConstruction p.init_index(max_elements=num_elements//2, ef_construction=100, M=16) # Controlling the recall by setting ef:
# higher ef leads to better accuracy, but slower search
p.set_ef(10) # Set number of threads used during batch search/construction
# By default using all available cores
p.set_num_threads(4) print("Adding first batch of %d elements" % (len(data1)))
p.add_items(data1) # Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data1, k=1)
print("Recall for the first batch:", np.mean(labels.reshape(-1) == np.arange(len(data1))), "\n") # Serializing and deleting the index:
index_path='first_half.bin'
print("Saving index to '%s'" % index_path)
p.save_index("first_half.bin")
del p # Re-initializing, loading the index
p = hnswlib.Index(space='l2', dim=dim) # the space can be changed - keeps the data, alters the distance function. print("\nLoading index from 'first_half.bin'\n") # Increase the total capacity (max_elements), so that it will handle the new data
p.load_index("first_half.bin", max_elements = num_elements) print("Adding the second batch of %d elements" % (len(data2)))
p.add_items(data2) # Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data, k=1)
print("Recall for two batches:", np.mean(labels.reshape(-1) == np.arange(len(data))), "\n")
Bindings installation
You can install from sources:
apt-get install -y python-setuptools python-pip
git clone https://github.com/nmslib/hnswlib.git
cd hnswlib
pip install .
or you can install via pip: pip install hnswlib
Other implementations
- Non-metric space library (nmslib) - main library(python, C++), supports exotic distances: https://github.com/nmslib/nmslib
- Faiss library by facebook, uses own HNSW implementation for coarse quantization (python, C++): https://github.com/facebookresearch/faiss
- Code for the paper "Revisiting the Inverted Indices for Billion-Scale Approximate Nearest Neighbors" (current state-of-the-art in compressed indexes, C++): https://github.com/dbaranchuk/ivf-hnsw
- TOROS N2 (python, C++): https://github.com/kakao/n2
- Online HNSW (C++): https://github.com/andrusha97/online-hnsw)
- Go implementation: https://github.com/Bithack/go-hnsw
- Python implementation (as a part of the clustering code by by Matteo Dell'Amico): https://github.com/matteodellamico/flexible-clustering
- Java implementation: https://github.com/jelmerk/hnswlib
- Java bindings using Java Native Access: https://github.com/stepstone-tech/hnswlib-jna
- .Net implementation: https://github.com/microsoft/HNSW.Net
- CUDA implementation: https://github.com/js1010/cuhnsw
Contributing to the repository
Contributions are highly welcome!
Please make pull requests against the develop
branch.
200M SIFT test reproduction
To download and extract the bigann dataset (from root directory):
python3 download_bigann.py
To compile:
mkdir build
cd build
cmake ..
make all
To run the test on 200M SIFT subset:
./main
The size of the BigANN subset (in millions) is controlled by the variable subset_size_millions hardcoded in sift_1b.cpp.
hnsw的更多相关文章
- Xamarin.iOS开发初体验
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAKwAAAA+CAIAAAA5/WfHAAAJrklEQVR4nO2c/VdTRxrH+wfdU84pW0
随机推荐
- Docker-Compose 管理镜像和容器(2)
一.前言 上一文章中介绍了Docker部署ASP.NET Core 项目,如何构建镜像和运行容器,但是每次代码更新还需要重复的工作,本文介绍Docker-Compose一个指令重新构建镜像和运行容器. ...
- MSF后渗透常用命令
一.在meterpreter命令行下常用的操作 ps # 查看当前活跃进程 migrate pid # 将Meterpreter会话移植到进程数位pid的进程中 execute -H -i -f cm ...
- TypeError: 'int' object is not subscriptable 报错
Python中报错TypeError: 'int' object is not subscriptable 原因:整形数据中加了下标索引 例如 #python utf-8 a = 10 b = a[0 ...
- ModuleNotFoundError:No module named 'past' 问题及解决方法
训练YOLOX时报错 ModuleNotFoundError:No module named 'past' 解决方法 使用pip安装对应的package:future pip install futu ...
- CSS布局display值inline、block、inline-block区别
inline前后不会有换行,block前后会有换行,inline-block前后不会有换行,但内部会换行且可以设置高宽.,如下图所示:
- CentOS7 yum设置阿里源
1.备份 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 2.下载新的CentOS-Base ...
- Mac卡顿 CPU占100%的原因Photolibraryd
找到了造成电脑卡顿的元凶,第一步要做的就是杀进程,选中这两个进程,点击上面的结束按钮,世界立马恢复了宁静,高兴的继续码代码,可是好景不长,大约一个小时以后,又特么卡了,"任务管理器" ...
- 题解[CF575E]Spectator_Riots
题意 一个球场,可以看作 \(10^5\times10^5\) 的矩形,每个位置都是一个整点.一个位置 \((x,y)\) 位于球场内当且仅当 \(x\in[0,10^5]\and y\in[0,10 ...
- kafka数据顺序一致
问题: kafka如何发送顺序消息 方案:kafka可以通过partitionKey,将某类消息写入同一个partition,一个partition只能对应一个消费线程,以保证数据有序. 也就是说生产 ...
- spider_爬取斗图啦所有表情包(图片保存)
"""爬取斗图吧里面的所有表情包知识点总结: 一.使用requests库进行爬取,随机请求头(网站反爬措施少.挂个请求头足矣) 二.具体思路: 1.先爬取所有的图片url ...