目录

以下介绍PY32F0系列在Ubuntu下如何使用GCC Arm Embedded Toolchain环境进行开发和烧录

项目模板

GitHub 仓库地址: https://github.com/IOsetting/py32f0-template

仓库文件结构

├── Build                       # 编译结果
├── Docs # 数据手册和用户手册
├── Examples
│   ├── FreeRTOS # FreeRTOS 例子(暂时为空)
│   ├── Raw # 非 FreeRTOS 的例子
│   └── Raw_LL # 非 FreeRTOS 的例子, 基于LL外设库
├── Libraries
│   ├── BSP # delay 和 printf 的 BSP 库
│   ├── BSP_LL # delay 和 printf 的 BSP 库, 基于LL外设库
│   ├── CMSIS
│   ├── LDScripts # 链接描述文件
│   ├── PY32F0xx_HAL_Driver # 外设驱动库
│   └── PY32F0xx_LL_Driver # LL(low layer)外设驱动库
├── Makefile # Make设置
├── Misc
│   ├── Flash
│   │   ├── Devices # 全系列 Flash 算法文件
│   │   └── Sources # Flash 算法文件源代码
│   └── SVD # SVD 文件, 用于 Debug
├── README.md
├── rules.mk # 预置的 make 规则
└── User # 用户项目代码目录

环境准备

硬件方面

  • PY32F0 开发板, 或任何基于 PY32F002/003/030 系列的电路
  • 烧录工具(任一)
    • J-Link: J-Link OB programmer
    • PyOCD: DAPLink or J-Link

注: STLink测试不成功, 写入会有Timeout错误

软件方面

环境配置和编译过程

1. 安装 GNU Arm Embedded Toolchain

根据你的PC架构, 从 Arm GNU Toolchain Downloads 下载工具链, 然后解压文件到合适的目录下, 例如

sudo mkdir -p /opt/gcc-arm/
sudo tar xvf arm-gnu-toolchain-12.2.rel1-x86_64-arm-none-eabi.tar.xz -C /opt/gcc-arm/
cd /opt/gcc-arm/
sudo chown -R root:root arm-gnu-toolchain-12.2.rel1-x86_64-arm-none-eabi/

2. (选项一) 安装 SEGGER J-Link

J-Link / J-Trace Downloads 下载并安装 SEGGER JLink

# installation command for .deb
sudo dpkg -i JLink_Linux_V770a_x86_64.deb

默认的安装路径是 /opt/SEGGER

将目录 [项目目录]/Misc/Flash/Devices/Puya 下的所有Flash算法文件(.FLM 文件), 复制到 [JLink 安装目录]/Devices/Puya 目录下

cd py32f0-template
sudo cp -r Misc/Flash/Devices/* /opt/SEGGER/JLink/Devices/

编辑 JLinkDevices.xml

sudo vi /opt/SEGGER/JLink/JLinkDevices.xml

<DataBase> 中增加以下内容

  <!--                 -->
<!-- Puya -->
<!-- -->
<Device>
<ChipInfo Vendor="Puya" Name="PY32F002AX5" WorkRAMAddr="0x20000000" WorkRAMSize="0xC00" Core="JLINK_CORE_CORTEX_M0"/>
<FlashBankInfo Name="Flash_20K" BaseAddr="0x08000000" MaxSize="0x5000" Loader="Devices/Puya/PY32F0xx_20.FLM" LoaderType="FLASH_ALGO_TYPE_OPEN" AlwaysPresent="1"/>
</Device>
<Device>
<ChipInfo Vendor="Puya" Name="PY32F002X5" WorkRAMAddr="0x20000000" WorkRAMSize="0xC00" Core="JLINK_CORE_CORTEX_M0"/>
<FlashBankInfo Name="Flash_20K" BaseAddr="0x08000000" MaxSize="0x5000" Loader="Devices/Puya/PY32F0xx_20.FLM" LoaderType="FLASH_ALGO_TYPE_OPEN" AlwaysPresent="1"/>
</Device>
<Device>
<ChipInfo Vendor="Puya" Name="PY32F003X4" WorkRAMAddr="0x20000000" WorkRAMSize="0x800" Core="JLINK_CORE_CORTEX_M0"/>
<FlashBankInfo Name="Flash_16K" BaseAddr="0x08000000" MaxSize="0x4000" Loader="Devices/Puya/PY32F003xx_16.FLM" LoaderType="FLASH_ALGO_TYPE_OPEN" AlwaysPresent="1"/>
</Device>
<Device>
<ChipInfo Vendor="Puya" Name="PY32F003X6" WorkRAMAddr="0x20000000" WorkRAMSize="0x1000" Core="JLINK_CORE_CORTEX_M0"/>
<FlashBankInfo Name="Flash_32K" BaseAddr="0x08000000" MaxSize="0x8000" Loader="Devices/Puya/PY32F003xx_32.FLM" LoaderType="FLASH_ALGO_TYPE_OPEN" AlwaysPresent="1"/>
</Device>
<Device>
<ChipInfo Vendor="Puya" Name="PY32F003X8" WorkRAMAddr="0x20000000" WorkRAMSize="0x2000" Core="JLINK_CORE_CORTEX_M0"/>
<FlashBankInfo Name="Flash_64K" BaseAddr="0x08000000" MaxSize="0x10000" Loader="Devices/Puya/PY32F003xx_64.FLM" LoaderType="FLASH_ALGO_TYPE_OPEN" AlwaysPresent="1"/>
</Device>
<Device>
<ChipInfo Vendor="Puya" Name="PY32F030X4" WorkRAMAddr="0x20000000" WorkRAMSize="0x800" Core="JLINK_CORE_CORTEX_M0"/>
<FlashBankInfo Name="Flash_16K" BaseAddr="0x08000000" MaxSize="0x4000" Loader="Devices/Puya/PY32F030xx_16.FLM" LoaderType="FLASH_ALGO_TYPE_OPEN" AlwaysPresent="1"/>
</Device>
<Device>
<ChipInfo Vendor="Puya" Name="PY32F030X6" WorkRAMAddr="0x20000000" WorkRAMSize="0x1000" Core="JLINK_CORE_CORTEX_M0"/>
<FlashBankInfo Name="Flash_32K" BaseAddr="0x08000000" MaxSize="0x8000" Loader="Devices/Puya/PY32F030xx_32.FLM" LoaderType="FLASH_ALGO_TYPE_OPEN" AlwaysPresent="1"/>
</Device>
<Device>
<ChipInfo Vendor="Puya" Name="PY32F030X7" WorkRAMAddr="0x20000000" WorkRAMSize="0x1800" Core="JLINK_CORE_CORTEX_M0"/>
<FlashBankInfo Name="Flash_48K" BaseAddr="0x08000000" MaxSize="0xC000" Loader="Devices/Puya/PY32F030xx_48.FLM" LoaderType="FLASH_ALGO_TYPE_OPEN" AlwaysPresent="1"/>
</Device>
<Device>
<ChipInfo Vendor="Puya" Name="PY32F030X8" WorkRAMAddr="0x20000000" WorkRAMSize="0x2000" Core="JLINK_CORE_CORTEX_M0"/>
<FlashBankInfo Name="Flash_64K" BaseAddr="0x08000000" MaxSize="0x10000" Loader="Devices/Puya/PY32F030xx_64.FLM" LoaderType="FLASH_ALGO_TYPE_OPEN" AlwaysPresent="1"/>
</Device>

2. (选项二): 安装 PyOCD

不要使用Ubuntu自带的apt仓库里的PyOCD, 这个版本 0.13.1+dfsg-1 太低, 无法识别 JLink OB

从Pip安装PyOCD

pip uninstall pyocd

这样会将 PyOCD 安装到这些目录

/home/[user]/.local/bin/pyocd
/home/[user]/.local/bin/pyocd-gdbserver
/home/[user]/.local/lib/python3.10/site-packages/pyocd-0.34.2.dist-info/*
/home/[user]/.local/lib/python3.10/site-packages/pyocd/*

在 Ubuntu 中, .profile 会自动把 .local 加入 PATH, 所以只需要执行一下 source ~/.profile 就能用 pyocd 命令了

3. 导出这个模板仓库

Clone到本地目录下

git clone https://github.com/IOsetting/py32f0-template.git

4. 修改 Makefile

根据自己本地环境, 修改Makefile

  • 确认 ARM_TOOCHAIN 指向的是正确的 arm-none-eabi-gcc 路径
  • 如果使用 J-Link, FLASH_PROGRM 可以用 jlink 或 pyocd
  • 如果使用 DAPLink, 要把 FLASH_PROGRM 设为 pyocd
  • ST-LINK 还不支持. ST-LINK 在 Windows Keil5 下可以使用, 但是在 Ubuntu 烧录 PY32 会报错
  • Puya 提供了两套外设驱动库, HAL lib 和 LL lib, 可以在 USE_LL_LIB 选项中切换, 默认的 User 应用使用的是 HAL 库
  • ENABLE_PRINTF_FLOAT 用于对 printf 中的 %f 增加支持, 会在连接参数中增加 -u _printf_float, 会大大增加最后生成的烧录文件尺寸.
##### Project #####

PROJECT			?= app
# The path for generated files
BUILD_DIR = Build ##### Options ##### # 是否使用 LL 库
USE_LL_LIB ?= y
# 是否启用 printf float %f 支持, y:yes, n:no
ENABLE_PRINTF_FLOAT ?= n
# 是否使用 CMSIS DSP 函数, y:yes, n:no
USE_DSP ?= n
# 编程器选择, jlink 或 pyocd
FLASH_PROGRM ?= pyocd ##### Toolchains ####### ARM_TOOCHAIN ?= /opt/gcc-arm/arm-gnu-toolchain-12.2.rel1-x86_64-arm-none-eabi/bin # JLinkExe 的路径
JLINKEXE ?= /opt/SEGGER/JLink/JLinkExe
# JLink 设备类型, 选项:
# PY32F002AX5, PY32F002X5,
# PY32F003X4, PY32F003X6, PY32F003X8,
# PY32F030X4, PY32F030X6, PY32F030X7, PY32F030X8
JLINK_DEVICE ?= PY32F003X8
# PyOCD 路径
PYOCD_EXE ?= pyocd
# PyOCD 设备类型, 选项:
# py32f002ax5, py32f002x5,
# py32f003x4, py32f003x6, py32f003x8,
# py32f030x3, py32f030x4, py32f030x6, py32f030x7, py32f030x8
# py32f072xb
PYOCD_DEVICE ?= py32f003x8 ##### Paths ############ # Link descript file: py32f003x6.ld, py32f003x8.ld, py32f030x6.ld, py32f030x8.ld
LDSCRIPT = Libraries/LDScripts/py32f003x8.ld
# Library 编译附加参数:
# PY32F002x5, PY32F002Ax5,
# PY32F003x4, PY32F003x6, PY32F003x8,
# PY32F030x3, PY32F030x4, PY32F030x6, PY32F030x7, PY32F030x8,
# PY32F072xB
LIB_FLAGS = PY32F003x8

5. 编译和烧录

编译执行

# clean source code
make clean
# build
make
# or make with verbose output
V=1 make

写入, 会根据前面的配置调用对应的烧录方法

# flash
make flash

尝试其它例子

Examples 目录下有更多的代码示例, 可以复制替换掉 User 目录下的文件, 然后编译烧录查看运行效果

普冉PY32系列(二) Ubuntu GCC Toolchain和VSCode开发环境的更多相关文章

  1. [eShopOnContainers 学习系列] - 03 - 在远程 Ubuntu 16.04 上配置开发环境

    直接把 md 粘出来了,博客园的富文本编辑器换成 markdown,没啥效果呀 ,先凑合吧.实在不行换地方   # 在远程 Ubuntu 16.04 上配置开发环境 ## 零.因 为什么要用这么麻烦的 ...

  2. HC32L110(三) HC32L110的GCC工具链和VSCode开发环境

    目录 HC32L110(一) HC32L110芯片介绍和Win10下的烧录 HC32L110(二) HC32L110在Ubuntu下的烧录 HC32L110(三) HC32L110的GCC工具链和VS ...

  3. 沁恒CH32V003(二): Ubuntu20.04 MRS和Makefile开发环境配置

    目录 沁恒CH32V003(一): CH32V003F4P6开发板上手报告和Win10环境配置 沁恒CH32V003(二): Ubuntu20.04 MRS和Makefile开发环境配置 硬件准备 沁 ...

  4. Ubuntu下配置C/C++开发环境

    在 Ubuntu 下配置 C/C++ 开发环境 转自:白巴的临时空间 Submitted by 白巴 on 2009-04-27 19:52:12. 学习笔记 虽然 Ubuntu 的版本已经是9.04 ...

  5. Ubuntu 12.04 搭建Android开发环境

    Ubuntu 12.04 搭建Android开发环境 2013/7/29 Linux环境下搭建Android开发环境 大部分开发人员可能都在Windows下做开发,可能是感觉在Windows下比较方便 ...

  6. 从零开始在ubuntu上配置深度学习开发环境

    从零开始在ubuntu上配置深度学习开发环境 昨天一不小心把原来配置好的台式机的开发环境破坏了,调了半天没有调回来,索性就重装一次ubuntu系统.这篇文章主要记录一个简单的.‘傻瓜式’教程. 一.U ...

  7. 39 Ubuntu下配置python的vscode开发环境

    0 引言 最近想在ubuntu下搞深度学习,首先配置了python的vscode开发环境.在配置python时,选择了Anaconda3.x,保证了其相对于系统python2.x的独立性.另外,vsc ...

  8. Ubuntu 14.04下java开发环境的搭建--3--Tomcat及MySQL的安装

    前面两篇文章,已经说明了JDK和Eclipse 的安装方法,下面简单说一下,Tomcat及MySQL的安装方法. Tomcat的安装. 在合适的地方解压apache-tomcat-6.0.39.tar ...

  9. 如何在Ubuntu下搭建Android NDK开发环境

    1 搭建Android SDK开发环境 参考在在Ubuntu下搭建Android SDK开发环境(图文)首先在Ubuntu下搭建Android SDK开发环境. 2 下载NDK开发包 打开官网: ht ...

  10. HK32F030MF4P6的Linux GCC工具链和VSCode开发环境

    HK32F030MF4P6简介 航顺的 HK32F030MF4P6, TSSOP20封装, Arm Cortex M0 内核, 内建32MHz时钟, 16K Flash, 2K RAM(实际上可用的有 ...

随机推荐

  1. 基于LZO的高性能无损数据解压缩IP

    LZOAccel-D LZO Data Decompression Core/无损数据解压缩IP Core LZOAccel-D是一个无损数据解压缩引擎的FPGA硬件实现,兼容LZO 2.10标准. ...

  2. SIP会话发起协议 - 先知道是什么(一)

    少年,思无邪,最最动人. 协议概述 SIP会话发起协议是VoIP技术中最常用的协议之一.它是一种应用层协议,与其它应用层协议协同工作,通过Internet控制多媒体通信会话. SIP采用SDP(会话描 ...

  3. ajax-Xhr

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. Go实现栈与队列基本操作

    @ 目录 一 前言 二 实现栈与队列基本操作 2.1 栈基本操作 2.2 队列基本操作 三 用栈实现队列 3.1 理论 3.2 算法题 3.3 思路 3.4 代码部分 四 用队列实现栈 4.1 理论 ...

  5. 【NGINX】浅尝

    Introduction Nginx is a web server that can also be used as a reverse proxy, load balancer, mail pro ...

  6. Go实现常用软件设计模式一:单例模式

    目录: 举个栗子 概念介绍 使用场景 1.举个栗子 类图 plantuml ``` @startuml'https://plantuml.com/class-diagramclass Elephant ...

  7. Linux中如何开启一个定时任务

    Linux的定时任务是基于cron驱动做到的 安装 Ubantu系统下安装crontab 正常情况下需要先执行:apt-get upgrade 进行升级 安装:apt-get install cron ...

  8. phpexcel 上传

    <?php require_once(ROOTPATH . "inc/PHPExcel/PHPExcel.class.php");//PHPExcel//获取数据 $objP ...

  9. 使用c#的 async/await编写 长时间运行的基于代码的工作流的 持久任务框架

    持久任务框架 (DTF) 是基于async/await 工作流执行框架.工作流的解决方案很多,包括Windows Workflow Foundation,BizTalk,Logic Apps, Wor ...

  10. 编译安装oh-my-zsh

    1.前言 oh-my-zsh是基于zsh的一套美化工具,其内部也提供很多主题以及插件.github介绍 2.有啥用 对我来说可能查看git分支更加直观,另外其强大的补全功能 又或者更加直观的查看上一条 ...