文章转载自:

https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484411&idx=1&sn=1f5a371095d61bd0d6461ed111dd252b&chksm=eaa82bd3dddfa2c5b08831bfd4221178b277f03ec74ef6c5a8f415409c21e569577fbc943f08&scene=21#wechat_redirect

0、题记

实际业务场景中,会遇到基础数据存在Mysql中,实时写入数据量比较大的情景。迁移至kafka是一种比较好的业务选型方案。

[在这里插入图片描述]

而mysql写入kafka的选型方案有:

方案一:logstash_output_kafka 插件。

方案二:kafka_connector。

方案三:debezium 插件。

方案四:flume。

方案五:其他类似方案。

其中:debezium和flume是基于mysql binlog实现的。

如果需要同步历史全量数据+实时更新数据,建议使用logstash。

1、logstash同步原理

常用的logstash的插件是:logstash_input_jdbc实现关系型数据库到Elasticsearch等的同步。

实际上,核心logstash的同步原理的掌握,有助于大家理解类似的各种库之间的同步。

logstash核心原理:输入生成事件,过滤器修改它们,输出将它们发送到其他地方。

logstash核心三部分组成:input、filter、output。

[在这里插入图片描述]

input { }

filter { }

output { }

1.1 input输入

包含但远不限于:

jdbc:关系型数据库:mysql、oracle等。

file:从文件系统上的文件读取。

syslog:在已知端口514上侦听syslog消息。

redis:redis消息。beats:处理 Beats发送的事件。

kafka:kafka实时数据流。

1.2 filter过滤器

过滤器是Logstash管道中的中间处理设备。您可以将过滤器与条件组合,以便在事件满足特定条件时对其执行操作。

可以把它比作数据处理的ETL环节。

一些有用的过滤包括:

grok:解析并构造任意文本。Grok是目前Logstash中将非结构化日志数据解析为结构化和可查询内容的最佳方式。有了内置于Logstash的120种模式,您很可能会找到满足您需求的模式!

mutate:对事件字段执行常规转换。您可以重命名,删除,替换和修改事件中的字段。

drop:完全删除事件,例如调试事件。

clone:制作事件的副本,可能添加或删除字段。

geoip:添加有关IP地址的地理位置的信息。

1.3 output输出

输出是Logstash管道的最后阶段。一些常用的输出包括:

elasticsearch:将事件数据发送到Elasticsearch。

file:将事件数据写入磁盘上的文件。

kafka:将事件写入Kafka。

详细的filter demo参考:http://t.cn/EaAt4zP

2、同步Mysql到kafka配置参考

input {

jdbc {

jdbc_connection_string => "jdbc:mysql://192.168.1.12:3306/news_base"

jdbc_user => "root"

jdbc_password => "xxxxxxx"

jdbc_driver_library => "/home/logstash-6.4.0/lib/mysql-connector-java-5.1.47.jar"

jdbc_driver_class => "com.mysql.jdbc.Driver"

#schedule => "* * * * *"

statement => "SELECT * from news_info WHERE id > :sql_last_value order by id"

use_column_value => true

tracking_column => "id"

tracking_column_type => "numeric"

record_last_run => true

last_run_metadata_path => "/home/logstash-6.4.0/sync_data/news_last_run"

}

}

filter {

ruby{

code => "event.set('gather_time_unix',event.get('gather_time').to_i1000)"

}

ruby{

code => "event.set('publish_time_unix',event.get('publish_time').to_i
1000)"

}

mutate {

remove_field => [ "@version" ]

remove_field => [ "@timestamp" ]

remove_field => [ "gather_time" ]

remove_field => [ "publish_time" ]

}

}

output {

kafka {

bootstrap_servers => "192.168.1.13:9092"

codec => json_lines

topic_id => "mytopic"

}
file {
codec => json_lines
path => "/tmp/output_a.log"
}

}

以上内容不复杂,不做细讲。

注意:

Mysql借助logstash同步后,日期类型格式:“2019-04-20 13:55:53”已经被识别为日期格式。

code =>
"event.set('gather_time_unix',event.get('gather_time').to_i*1000)",

是将Mysql中的时间格式转化为时间戳格式。

3、坑总结

3.1 坑1字段大小写问题

from星友:使用logstash同步mysql数据的,因为在jdbc.conf里面没有添加 lowercase_column_names
=> "false" 这个属性,所以logstash默认把查询结果的列明改为了小写,同步进了es,所以就导致es里面看到的字段名称全是小写。

最后总结:es是支持大写字段名称的,问题出在logstash没用好,需要在同步配置中加上 lowercase_column_names => "false" 。记录下来希望可以帮到更多人。

3.2 同步到ES中的数据会不会重复?

想将关系数据库的数据同步至ES中,如果在集群的多台服务器上同时启动logstash。

解读:实际项目中就是没用随机id 使用指定id作为es的_id ,指定id可以是url的md5.这样相同数据就会走更新覆盖以前数据

3.3 相同配置logstash,升级6.3之后不能同步数据。

解读:高版本基于时间增量有优化。

tracking_column_type => "timestamp"应该是需要指定标识为时间类型,默认为数字类型numeric

3.4 ETL字段统一在哪处理?

解读:可以logstash同步mysql的时候sql查询阶段处理,如:select a_value as avalue***。

或者filter阶段处理,mutate rename处理。

mutate {

rename => ["shortHostname", "hostname" ]

}

或者kafka阶段借助kafka stream处理。

4、小结

相关配置和同步都不复杂,复杂点往往在于filter阶段的解析还有logstash性能问题。

需要结合实际业务场景做深入的研究和性能分析。

有问题,欢迎留言讨论。

几篇关于MySQL数据同步到Elasticsearch的文章---第三篇:logstash_output_kafka:Mysql同步Kafka深入详解的更多相关文章

  1. 几篇关于MySQL数据同步到Elasticsearch的文章---第五篇:logstash-input-jdbc实现mysql 与elasticsearch实时同步深入详解

    文章转载自: https://blog.csdn.net/laoyang360/article/details/51747266 引言: elasticsearch 的出现使得我们的存储.检索数据更快 ...

  2. 几篇关于MySQL数据同步到Elasticsearch的文章---第四篇:使用go-mysql-elasticsearch同步mysql数据库信息到ElasticSearch

    文章转载自: https://www.cnblogs.com/dalaoyang/p/11018541.html 1.go-mysql-elasticsearch简介 go-mysql-elastic ...

  3. Logstash:把MySQL数据导入到Elasticsearch中

    Logstash:把MySQL数据导入到Elasticsearch中 前提条件 需要安装好Elasticsearch及Kibana. MySQL安装 根据不同的操作系统我们分别对MySQL进行安装.我 ...

  4. 使用Logstash把MySQL数据导入到Elasticsearch中

    总结:这种适合把已有的MySQL数据导入到Elasticsearch中 有一个csv文件,把里面的数据通过Navicat Premium 软件导入到数据表中,共有998条数据 文件下载地址:https ...

  5. 《手把手教你》系列基础篇(八十一)-java+ selenium自动化测试-框架设计基础-TestNG如何暂停执行一些case(详解教程)

    1.简介 在实际测试过程中,我们经常会遇到这样的情况,开发由于某些原因导致一些模块进度延后,而你的自动化测试脚本已经提前完成,这样就会有部分模块测试,有部分模块不能进行测试.这就需要我们暂时不让一些t ...

  6. 《手把手教你》系列基础篇(八十七)-java+ selenium自动化测试-框架设计基础-Log4j 2实现日志输出-上篇(详解教程)

    1.简介 Apache Log4j 是一个非常古老的日志框架,并且是多年来最受欢迎的日志框架. 它引入了现代日志框架仍在使用的基本概念,如分层日志级别和记录器. 2015 年 8 月 5 日,该项目管 ...

  7. 几篇关于MySQL数据同步到Elasticsearch的文章---第二篇:canal 实现Mysql到Elasticsearch实时增量同步

    文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484377&idx=1&sn=199bc88 ...

  8. 几篇关于MySQL数据同步到Elasticsearch的文章---第一篇:Debezium实现Mysql到Elasticsearch高效实时同步

    文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484358&idx=1&sn=3a78347 ...

  9. Mysql系列五:数据库分库分表中间件mycat的安装和mycat配置详解

    一.mycat的安装 环境准备:准备一台虚拟机192.168.152.128 1. 下载mycat cd /softwarewget http:-linux.tar.gz 2. 解压mycat tar ...

随机推荐

  1. 你真的了解JAVA中对象和类、this、super和static关键字吗

    作者:小牛呼噜噜 | https://xiaoniuhululu.com 计算机内功.JAVA底层.面试相关资料等更多精彩文章在公众号「小牛呼噜噜 」 目录 Java对象究竟是什么? 创建对象的过程 ...

  2. NOI / 2.1基本算法之枚举-8760:Cantor表

    总时间限制: 1000ms 内存限制: 65536kB 描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 我们以Z字形给上表的每一项编 ...

  3. 多校B层冲刺NOIP20211110 字符配对游戏

    原题 问题描述 操场边,运动会没有项目的同学也没闲着,经过几天的研究,他们发明了一个很有意思的字符串配对游戏,两位同学准备两张白纸,第一个同学在纸上写一个整数N和一个由小写字母组成的字符串S,将S重复 ...

  4. nginx编译安装支持lua脚本

    一.准备编译环境 1.操作系统:CentOS7.6 2.安装编译所需安装包 yum install gcc pcre pcre-devel zlib zlib-devel openssl openss ...

  5. 多态的好处和instanceof关键字

    多态的好处: 可替换性:多态对已经存在的代码具有可替换性 可扩展性:多态对待吗具有可扩展性,增加新的子类不影响已经存在类的多态性,继承性,以及其他特征的运行和操作.实际上新家子类更容易获得多态功能 接 ...

  6. 丽泽普及2022交流赛day17 社论

    http://zhengruioi.com/contest/1088 SoyTony 重新 rk1 . stO SoyTony Orz 省流:俩计数 . 目录 目录 A 题面 题解 Key 算法 1( ...

  7. 妙用 CSS 构建花式透视背景效果

    本文将介绍一种巧用 background 配合 backdrop- filter 来构建有趣的透视背景效果的方式. 本技巧源自于一名群友的提问,如何构建如 ElementUI 文档的一种顶栏背景特效, ...

  8. RocketMQ 详解系列

    什么是RocketMQ RocketMQ作为一款纯java.分布式.队列模型的开源消息中间件,支持事务消息.顺序消息.批量消息.定时消息.消息回溯等.主要功能是异步解耦和流量削峰:. 常见的MQ主要有 ...

  9. Docker 06 部署Nginx

    参考源 https://www.bilibili.com/video/BV1og4y1q7M4?spm_id_from=333.999.0.0 https://www.bilibili.com/vid ...

  10. meterpreter后期攻击使用方法

    Meterpreter是Metasploit框架中的一个扩展模块,作为溢出成功以后的攻击载荷使用,攻击载荷在溢出攻击成功以后给我们返回一个控制通道.使用它作为攻击载荷能够获得目标系统的一个Meterp ...