NC15163 逆序数

题目

题目描述

在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。比如一个序列为 \(4\) \(5\) \(1\) \(3\) \(2\), 那么这个序列的逆序数为 \(7\),逆序对分别为 (4, 1), (4, 3), (4, 2), (5, 1), (5, 3), (5, 2),(3, 2) 。

输入描述

第一行有一个整数 \(n(1 <= n <= 100000)\) , 然后第二行跟着 \(n\) 个整数,对于第 \(i\) 个数 \(a[i],(0 <= a[i] <= 100000)\) 。

输出描述

输出这个序列中的逆序数

示例1

输入

5
4 5 1 3 2

输出

7

题解

思路

知识点:递归,排序。

众所周知,排序可以理解为把一个具有逆序数的序列变换为逆序数为零的序列。而归并排序每次交换元素,只会导致逆序数减少,而且可以非常容易的计算。

归并排序先把序列对半分,直到只有一个元素(可视为排序好的)开始回溯进行排序。而将两个排序好的序列归并是很容易的,只要用两个指针 \(i,j\) 分别指向两个数组的头部开始遍历,再创建一个临时数组,依次哪个小就放哪个进临时数组,最后覆盖回去即可。在这个过程中,各自序列的元素的相对位置不会改变,而左序列元素和右序列各个元素的相对位置可能会发生改变。每次遇到一个左序列元素大于右序列元素,则将右序列元素提前,仅在这个过程会仅减少逆序数,值为 \(mid-i+1\) ,即左序列剩余元素个数。将每次归并减少的逆序数累加,就是最终答案。

时间复杂度 \(O(n \log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

long long cnt = 0;
int a[100007], b[100007];
void merge_sort(int l, int r) {
if (l == r) return;
int mid = l + r >> 1;
merge_sort(l, mid);
merge_sort(mid + 1, r);
int i = l, j = mid + 1, k = l;
while (i <= mid && j <= r) {
if (a[i] <= a[j]) b[k++] = a[i++];
else b[k++] = a[j++], cnt += mid - i + 1;
}
while (i <= mid) b[k++] = a[i++];
while (j <= r) b[k++] = a[j++];
for (int i = l;i <= r;i++) a[i] = b[i];
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
cin >> n;
for (int i = 0;i < n;i++) cin >> a[i];
merge_sort(0, n - 1);
cout << cnt << '\n';
return 0;
}

NC15163 逆序数的更多相关文章

  1. HDU3465 树状数组逆序数

    Life is a Line Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)T ...

  2. HDU 1394 Minimum Inversion Number(最小逆序数 线段树)

    Minimum Inversion Number [题目链接]Minimum Inversion Number [题目类型]最小逆序数 线段树 &题意: 求一个数列经过n次变换得到的数列其中的 ...

  3. 递归O(NlgN)求解逆序数

    导言 第一次了解到逆序数是在高等代数课程上.当时想计算一个数列的逆序数直觉就是用两重循环O(n^2)暴力求解.现在渐渐对归并算法有了一定的认识,因此决定自己用C++代码小试牛刀. 逆序数简介 由自然数 ...

  4. FZU 2184 逆序数还原

    传送门 Description 有一段时间Eric对逆序数充满了兴趣,于是他开始求解许多数列的逆序数(对于由1...n构成的一种排列数组a,逆序数即为满足i<j,ai>aj的数字对数),但 ...

  5. HDU 1394 Minimum Inversion Number(最小逆序数/暴力 线段树 树状数组 归并排序)

    题目链接: 传送门 Minimum Inversion Number Time Limit: 1000MS     Memory Limit: 32768 K Description The inve ...

  6. poj 1007:DNA Sorting(水题,字符串逆序数排序)

    DNA Sorting Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 80832   Accepted: 32533 Des ...

  7. POJ 2299 Ultra-QuickSort 逆序数 树状数组 归并排序 线段树

    题目链接:http://poj.org/problem?id=2299 求逆序数的经典题,求逆序数可用树状数组,归并排序,线段树求解,本文给出树状数组,归并排序,线段树的解法. 归并排序: #incl ...

  8. HDU 4911 (树状数组+逆序数)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4911 题目大意:最多可以交换K次,就最小逆序对数 解题思路: 逆序数定理,当逆序对数大于0时,若ak ...

  9. HDU-Minimum Inversion Number(最小逆序数)

    Problem Description The inversion number of a given number sequence a1, a2, ..., an is the number of ...

随机推荐

  1. Java创建boolean型数组

    Java如何声明并初始化一个boolean型的数组? public class Main{ static boolean[] arr1 = new boolean[20]; public static ...

  2. jstl操作session

    1.jstl操作session(添加.删除session中的值)

  3. 网络爬虫、Pandas

    网络爬虫.Pandas Pandas 是 Python 语言的一个扩展程序库,用于数据分析. Pandas 是一个开放源码.BSD 许可的库,提供高性能.易于使用的数据结构和数据分析工具. Panda ...

  4. 如何使用Python实现图像融合及加法运算?

    摘要:本篇文章主要讲解Python调用OpenCV实现图像融合及加法运算,包括三部分知识:图像融合.图像加法运算.图像类型转换. 本文分享自华为云社区<[Python图像处理] 五.图像融合.加 ...

  5. vue - Vue路由(扩展)

    忙里偷闲,还在学校,趁机把后面的路由多出来的知识点学完 十.缓存路由组件 让不展示的路由组件保持挂载,不被销毁 在我们的前面案例有一个问题,都知道vue的路由当我们切换一个路由后,另一个路由就会被销毁 ...

  6. mybatis plus 的 ActiveRecord 模式

    实体类继承 Model public class Test extends Model<Test> implements Serializable {} 就可以 new Test().in ...

  7. Go中rune类型浅析

    一.字符串简单遍历操作 在很多语言中,字符串都是不可变类型,golang也是. 1.访问字符串字符 如下代码,可以实现访问字符串的单个字符和单个字节 package main import ( &qu ...

  8. Kafka到底有多高可靠?(RNG NB)

    在聊Kafka高可靠之前,先在评论区来波RNG NB好不好! 什么叫可靠性? 大家都知道,系统架构有三高:「高性能.高并发和高可用」,三者的重要性不言而喻. 对于任意系统,想要同时满足三高都是一件非常 ...

  9. 清除 GitHub 历史记录的隐私信息

    清理 github 敏感信息 有的时候我们在提交到github上的内容不小心含有敏感代码,比如密码,公司的服务器IP等.这个时候就要通过一些手段清除这些信息. GitHub官方方案比较码放,所以推荐使 ...

  10. php三行代码解决输入地址给出经纬度

    //获取地址经纬度坐标 public function getAddress() { $ak = 'GPIrsdfZ-UNLRP-VBBDB-V3AGK-XL5KO-5DBNY'; $address  ...