1.从条件概率来定义互斥和对立事件

2.互斥事件是独立事件吗?

3.每个样本点都可以看作是互斥事件,来重新看待条件概率

一、从条件概率来定义互斥和对立事件

根据古典概率-条件概率的定义,当在“A的样本点集合中,没有一个B集合中的样本点”的时候:

则A、B事件构成了一对互斥事件,简单理解就是发生了A就绝对不可能发生B,又根据条件概率的展开式,我们可以推出常见的两个公式:

互斥事件在V-N图上来看,就是两个事件的集合没有交集。

二.互斥事件是独立事件吗?

互斥事件不仅不是独立事件,还是一种关系十分紧密的事件,它的关系是“如果A发生,则B一定不发生”,这是可谓是你死我活般的关系。

独立事件的意思是“A的发生对B的发生概率值没有任何影响”,这不仅仅有影响还给全面否定了。

三.每个样本点都可以看作是互斥事件,来重新看待条件概率

因为每个样本点之间都是没有任何交集的,所以各个样本点之间都是互斥事件。

(1)A事件的发生=A集合中的任意一个样本点发生。

(2)由互斥事件含义,A集合外的任意一个样本点都不可能发生。

(3)在条件A的约束下,我们不可能选择到A集合外的样本点。

(4)也就是说我们只能从A集合中任意选择一个点

(5)如果选择的是样本点也在B集合中,那么就是P(B|A)

由此我们推出从互斥事件的角度来理解的条件概率的公式:

对互斥事件和条件概率的相互理解《考研概率论学习之我见》 -by zobol的更多相关文章

  1. 开始讨论离散型随机变量吧!《考研概率论学习之我见》 -by zobol

    上一文中,笔者给出了随机变量的基本定义:一个可测映射,从结果空间到实数集,我们的目的是为了引入函数这个数学工具到考研概率论中,但是我们在现实中面对的一些事情结果,映射而成的随机变量和其对应的概率值,并 ...

  2. 如何正确理解古典概率中的条件概率 《考研概率论学习之我见》 -by zobol

    "B事件发生的条件下,A事件发生的概率"? "在A集合内有多少B的样本点"? "在B约束条件下,A发生的概率变化为?" "B事件中 ...

  3. 怎么理解相互独立事件?真的是没有任何关系的事件吗?《考研概率论学习之我见》 -by zobol

    1.从条件概率的定义来看独立事件的定义 2.从古典概率的定义来看独立事件的定义 3.P(A|B)和P(A)的关系是什么? 4.由P(AB)=P(A)P(B)推出"独立" 5.从韦恩 ...

  4. 最简单的离散概率分布,伯努利分布 《考研概率论学习之我见》 -by zobol

    上文讲了离散型随机变量的分布,我们从最简单的离散型分布伯努利分布讲起,伯努利分布很简单,但是在现实生活中使用的很频繁.很多从事体力工作的人,在生活中也是经常自觉地"发现"伯努利分布 ...

  5. 3.对互斥事件和条件概率的相互理解《zobol的考研概率论教程》

    tag:这篇文章没太多思考的地方,就是做个过渡 1.从条件概率来定义互斥和对立事件 2.互斥事件是独立事件吗? 3.每个样本点都可以看作是互斥事件,来重新看待条件概率 一.从条件概率来定义互斥和对立事 ...

  6. 2.如何正确理解古典概率中的条件概率《zobol的考研概率论教程》

    写本文主要是帮助粉丝理解考研中的古典概率-条件概率的具体定义. "B事件发生的条件下,A事件发生的概率"? "在A集合内有多少B的样本点"? "在B约 ...

  7. 4.怎么理解相互独立事件?真的是没有任何关系的事件吗? 《zobol的考研概率论教程》

    1.从条件概率的定义来看独立事件的定义 2.从古典概率的定义来看独立事件的定义 3.P(A|B)和P(A)的关系是什么? 4.由P(AB)=P(A)P(B)推出"独立" 5.从韦恩 ...

  8. 1.为什么要从古典概率入门概率学《zobol的考研概率论教程》

    在入门概率论与数理统计这门课中,刚开始我们都会从古典概率开始学习,为什么要选择它呢?这是因为古典概率作为一种将生活中的事情简化为有限种情况,并假设它们的发生可能差不多的手段,十分的好用且简洁. 这里我 ...

  9. 第1期 考研中有关函数的一些基本性质《zobol考研微积分学习笔记》

    在入门考研微积分中,我们先复习一部分中学学的初等数学的内容.函数是非常有用的数学工具. 1.函数的性质理解: 首先考研数学中的所有函数都是初等函数.而函数的三个关键就是定义域.值域.对应关系f. 其中 ...

随机推荐

  1. 脏数据清洗,pandas.apply()的应用

    原数据如下所示: IMAGETYPE count .?+? 1713 Jh.5? 100 .??U 38 .11.1 1 .13.1 1 .15.11 2 我需要对数据内的带有特殊符号,且第一个逗号 ...

  2. Struts2-EL表达式为什么能获取值栈数据

    1.EL表达式能获取域对象值 2.向域对象里面放值使用setAttribute方法,获取使用getAttribute方法 3.底层增强request对象里面的方法getAttribute方法 (1)首 ...

  3. kubectl creat -f 创建pod时出错

    如果创建yaml时候,sts中已经存在,但是get pod又查不到已经启动的pod可以这样 [root@k3master src]# kubectl get pod //查不到eureka NAME ...

  4. C#二次开发BIMFACE系列61 File Management文件管理服务接口二次开发及实战详解

    系列目录     [已更新最新开发文章,点击查看详细] 在我的博客<C#二次开发BIMFACE系列61 File Management文件管理服务接口二次开发及实战详解>最后列出了 Fil ...

  5. 【职场必备】6个免费良心网站&职场办公网站(收藏血赚)

    1.随机自动生成头像的网站:https://www.tool22.com/Tools-SJTX.html2.迅捷PDF转换器:https://app.xunjiepdf.com/3.全网音乐下载:① ...

  6. mmdetection 批量执行测试脚本

    在终端执行该脚本,传入所有的测试路径,每一个model的结果文件夹里面有一个best文件夹存放着其训练时最高mAP对应的权重,名字为best.pth dir=$(ls -l $1 |awk '/^d/ ...

  7. 【python免费代码】设计一个简单的学生信息管理系统

    文章目录 前言 一.理解 二.部分截图展示 三.代码 四.总结 前言 设计一个简单的学生信息管理系统,实现以下功能(bug) : 录入学生信息,信息以文件方式存储 以学生学号或者学生姓名为条件查询该学 ...

  8. Django-ORM-连表正反操作

    一.A表男生,B表女生,C表关系 1通过A表查与某个男生有关系的所有女生 思想1:在A表中确认男生后,通过反查到C表,获取相关内容(QuerySet),然后再跨到B表获取所有女生信息. obj=mod ...

  9. [题解][YZOJ50104] 密码 | 简单计数

    同步发表于 Mina! 题目大意 对于满足以下要求的长度为 \(n\) 的序列进行计数: 序列的值域为 \([1,k]\); 对于序列的任意位置 \(p\in[1,n]\),可以找到至少一个 \(i\ ...

  10. 用 Docker 构建 MySQL 主从环境

    开源Linux 一个执着于技术的公众号 前言 本篇文章记录使用 docker-compose 以及 dockerfile 来构建基于 binlog 的 MySQL 主从环境.如果你严格按照文中的步骤进 ...