用NetworkX生成并绘制(带权)无向图
NetworkX是一个非常强大的网络科学工具,它封装了图的数据结构和许多经典图算法,也内置了许多可视化函数可供调用。
1. 随机图生成
最经典的随机图当属我们在上一篇博客《Erdos-Renyi随机图的生成方式及其特性》中讲到的Erdős-Rény随机图了,我们这里选用其中的\(_{np}\)形式,调用以下API:
G = nx.erdos_renyi_graph(10, 0.3, seed=1)
这里表示生成10个顶点的图,且图的每条边都以0.3的概率产生。
当然,此时生成的图不具有权重,我们想在此基础上均匀随机初始化[0, 0.4]之间的权重,可以这样写:
G = nx.Graph()
for u, v in nx.erdos_renyi_graph(10, 0.3, seed=1).edges():
G.add_edge(u, v, weight=random.uniform(0, 0.4))
2. 2D布局可视化
随机图生成好之后,我们就要对其进行可视化了。首先我们需要计算每个节点在图中摆放的位置,经典的Fruchterman-Reingold force-directed 算法可以完成这个操作,对应NetworkX中的spring_layout函数:
pos = nx.spring_layout(G, iterations=20) #我们设算法迭代次数为20次
然后就可以分别绘制图的边、节点和节点标签了:
nx.draw_networkx_edges(G, pos, edge_color="orange")
nx.draw_networkx_nodes(G, pos, node_color="black")
nx.draw_networkx_labels(G, pos, font_color="white")
plt.show()
绘图结果如下:

当然,这样图的权值是无法体现于图上的,如果我们需要图的权值体现于图上,可以使图中边的宽度按照权值大小来设置:
nx.draw_networkx_edges(G,pos, width=[float(d['weight']*10) for (u,v,d) in G.edges(data=True)], edge_color="orange")
nx.draw_networkx_nodes(G,pos, node_color="black")
nx.draw_networkx_labels(G, pos, font_color="white")
plt.show()
此时的绘图结果如下:

3. 3D布局可视化
如果你觉得2D布局过于扁平,还不够直观地体现节点之间的拓扑关系,那你可以采用如下的代码对图进行三维可视化:
# 3d spring layout
pos = nx.spring_layout(G, dim=3, seed=779)
# Extract node and edge positions from the layout
node_xyz = np.array([pos[v] for v in sorted(G)])
edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()])
# Create the 3D figure
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
# Plot the nodes - alpha is scaled by "depth" automatically
ax.scatter(*node_xyz.T, s=100, ec="w")
# Plot the edges
for vizedge in edge_xyz:
ax.plot(*vizedge.T, color="tab:gray")
def _format_axes(ax):
"""Visualization options for the 3D axes."""
# Turn gridlines off
ax.grid(False)
# Suppress tick labels
for dim in (ax.xaxis, ax.yaxis, ax.zaxis):
dim.set_ticks([])
# Set axes labels
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
_format_axes(ax)
fig.tight_layout()
plt.show()
此时的绘图结果如下:

参考
用NetworkX生成并绘制(带权)无向图的更多相关文章
- POJ 2631 DFS+带权无向图最长路径
http://poj.org/problem?id=2631 2333水题, 有一个小技巧是说随便找一个点作为起点, 找到这个点的最远点, 以这个最远点为起点, 再次找到的最远点就是这个图的最远点 证 ...
- 带权图的最短路径算法(Dijkstra)实现
一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...
- 双缓冲绘图和窗口控件的绘制——ATL ActiveX 窗口控件生成向导绘制代码OnDraw的一个错误 .
双缓冲绘图和窗口控件的绘制 ---ATL ActiveX 窗口控件生成向导绘制代码OnDraw的一个错误 cheungmine 我们通常使用ATL COM组件,生成一个带窗口的ActiveX控件,然后 ...
- 某种带权有向无环图(graph)的所有路径的求法
// 讨论QQ群:135202158 最近做某个东西,最后用图实现了,这里总结一下算法. 假设有以下带权有向无环图(连通或非连通,我这里用的是非连通的): 每个节点(node)可能与其他节点有向地相连 ...
- poj 2492 A Bug's Life【带权并查集】
就是给一个无向图判是否有奇环 用带权并查集来做,边权1表示连接的两个节点异性,否则同性,在%2意义下进行加法运算即可,最后判相同的时候也要%2,因为可能有负数 #include<iostream ...
- Python绘制拓扑图(无向图)、有向图、多重图。最短路径计算
前言: 数学中,“图论”研究的是定点和边组成的图形. 计算机中,“网络拓扑”是数学概念中“图”的一个子集.因此,计算机网络拓扑图也可以由节点(即顶点)和链路(即边)来进行定义和绘制. 延伸: 无向图 ...
- 有向网络(带权的有向图)的最短路径Dijkstra算法
什么是最短路径? 单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值) 什么是最短路径问题? 给定一带权图,图中每条边的权值是非负的,代表着两顶点 ...
- 浅谈并查集&种类并查集&带权并查集
并查集&种类并查集&带权并查集 前言: 因为是学习记录,所以知识讲解+例题推荐+练习题解都是放在一起的qvq 目录 并查集基础知识 并查集基础题目 种类并查集知识 种类并查集题目 并查 ...
- 51nod1459(带权值的dijkstra)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1459 题意:中文题诶- 思路:带权值的最短路,这道题数据也没 ...
随机推荐
- 聊一聊Java8 Optional,让你的代码更加优雅
码农在囧途 随着时间的推移,曾经我们觉得重要的东西,可能在今天看来是如此的浅薄和无知,同理,今天我们放不下,想不开,觉得重要的东西,多年后我们可能也会觉得也就那样,所以,今天的的所有烦恼,忧愁,想不开 ...
- x64 简介
本篇原文为 introduction to x64 assembly ,如果有良好的英文基础,可以点击该链接进行下载阅读.本文为我个人:寂静的羽夏(wingsummer) 中文翻译,非机翻,著作权 ...
- 【Flutter】Flutter C/C++ 插件的开发 (支持 windows、macos、ios、android )
一个各平台调用 C/C++ 源码的例子,如何共享代码,配置相关的编译 官方的例子:https://docs.flutter.dev/development/platform-integration/c ...
- 在网页中预览excel表格文件
项目需求在前端页面中实现预览excel表格的功能,上网了解之后大致总结为一下几种方法. 1.office文档转换为pdf,再转swf,然后通过网页加载flash进行预览 2.通过 xlsx.js,js ...
- 推荐一款强大的轻量级模块化WEB前端快速开发框架--UIkit
前言 今天给大家分享一款强大的轻量级模块化WEB前端快速开发框架--UIkit 到目前(2016-06-20)为止,UIkit在github上的Forks已达到了1350个,而Stars更是达到了69 ...
- C#编写一个控制台应用程序,输入三角形或者长方形边长,计算其周长和面积并输出
编写一个控制台应用程序,输入三角形或者长方形边长,计算其周长和面积并输出. 代码: using System; using System.Collections.Generic; using Syst ...
- jdbc连接MySQL数据库+简单实例(普通JDBC方法实现和连接池方式实现)
jdbc连接数据库 总结内容 1. 基本概念 jdbc的概念 2. 数据库连接 数据库的连接 DAO层思想 重构设计 3. 事务 概念 事务的ACID属性 事务的操作 4. 连接池 为什么要使用连接池 ...
- vue中触发键盘事件的两种方法和如何自定义键位事件,完整代码!
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 使用babel编译器将es6代码转为es5的方法
1.首先需要安装工具 babel-cli ========= npm i babel-cli -g install 可以使用i 代替 2.安装插件 npm i --save-dev babe ...
- Coursera 学习笔记|Machine Learning by Standford University - 吴恩达
/ 20220404 Week 1 - 2 / Chapter 1 - Introduction 1.1 Definition Arthur Samuel The field of study tha ...