NetworkX是一个非常强大的网络科学工具,它封装了图的数据结构和许多经典图算法,也内置了许多可视化函数可供调用。

1. 随机图生成

最经典的随机图当属我们在上一篇博客《Erdos-Renyi随机图的生成方式及其特性》中讲到的Erdős-Rény随机图了,我们这里选用其中的\(_{np}\)形式,调用以下API:

G = nx.erdos_renyi_graph(10, 0.3, seed=1)

这里表示生成10个顶点的图,且图的每条边都以0.3的概率产生。

当然,此时生成的图不具有权重,我们想在此基础上均匀随机初始化[0, 0.4]之间的权重,可以这样写:

G = nx.Graph()
for u, v in nx.erdos_renyi_graph(10, 0.3, seed=1).edges():
G.add_edge(u, v, weight=random.uniform(0, 0.4))

2. 2D布局可视化

随机图生成好之后,我们就要对其进行可视化了。首先我们需要计算每个节点在图中摆放的位置,经典的Fruchterman-Reingold force-directed 算法可以完成这个操作,对应NetworkX中的spring_layout函数:

pos = nx.spring_layout(G, iterations=20) #我们设算法迭代次数为20次

然后就可以分别绘制图的边、节点和节点标签了:

nx.draw_networkx_edges(G, pos, edge_color="orange")
nx.draw_networkx_nodes(G, pos, node_color="black")
nx.draw_networkx_labels(G, pos, font_color="white")
plt.show()

绘图结果如下:

当然,这样图的权值是无法体现于图上的,如果我们需要图的权值体现于图上,可以使图中边的宽度按照权值大小来设置:

nx.draw_networkx_edges(G,pos, width=[float(d['weight']*10) for (u,v,d) in G.edges(data=True)], edge_color="orange")
nx.draw_networkx_nodes(G,pos, node_color="black")
nx.draw_networkx_labels(G, pos, font_color="white")
plt.show()

此时的绘图结果如下:

3. 3D布局可视化

如果你觉得2D布局过于扁平,还不够直观地体现节点之间的拓扑关系,那你可以采用如下的代码对图进行三维可视化:

# 3d spring layout
pos = nx.spring_layout(G, dim=3, seed=779)
# Extract node and edge positions from the layout
node_xyz = np.array([pos[v] for v in sorted(G)])
edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()]) # Create the 3D figure
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d") # Plot the nodes - alpha is scaled by "depth" automatically
ax.scatter(*node_xyz.T, s=100, ec="w") # Plot the edges
for vizedge in edge_xyz:
ax.plot(*vizedge.T, color="tab:gray") def _format_axes(ax):
"""Visualization options for the 3D axes."""
# Turn gridlines off
ax.grid(False)
# Suppress tick labels
for dim in (ax.xaxis, ax.yaxis, ax.zaxis):
dim.set_ticks([])
# Set axes labels
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z") _format_axes(ax)
fig.tight_layout()
plt.show()

此时的绘图结果如下:

参考

用NetworkX生成并绘制(带权)无向图的更多相关文章

  1. POJ 2631 DFS+带权无向图最长路径

    http://poj.org/problem?id=2631 2333水题, 有一个小技巧是说随便找一个点作为起点, 找到这个点的最远点, 以这个最远点为起点, 再次找到的最远点就是这个图的最远点 证 ...

  2. 带权图的最短路径算法(Dijkstra)实现

    一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...

  3. 双缓冲绘图和窗口控件的绘制——ATL ActiveX 窗口控件生成向导绘制代码OnDraw的一个错误 .

    双缓冲绘图和窗口控件的绘制 ---ATL ActiveX 窗口控件生成向导绘制代码OnDraw的一个错误 cheungmine 我们通常使用ATL COM组件,生成一个带窗口的ActiveX控件,然后 ...

  4. 某种带权有向无环图(graph)的所有路径的求法

    // 讨论QQ群:135202158 最近做某个东西,最后用图实现了,这里总结一下算法. 假设有以下带权有向无环图(连通或非连通,我这里用的是非连通的): 每个节点(node)可能与其他节点有向地相连 ...

  5. poj 2492 A Bug's Life【带权并查集】

    就是给一个无向图判是否有奇环 用带权并查集来做,边权1表示连接的两个节点异性,否则同性,在%2意义下进行加法运算即可,最后判相同的时候也要%2,因为可能有负数 #include<iostream ...

  6. Python绘制拓扑图(无向图)、有向图、多重图。最短路径计算

    前言: 数学中,“图论”研究的是定点和边组成的图形. 计算机中,“网络拓扑”是数学概念中“图”的一个子集.因此,计算机网络拓扑图也可以由节点(即顶点)和链路(即边)来进行定义和绘制. 延伸: 无向图 ...

  7. 有向网络(带权的有向图)的最短路径Dijkstra算法

    什么是最短路径? 单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值) 什么是最短路径问题? 给定一带权图,图中每条边的权值是非负的,代表着两顶点 ...

  8. 浅谈并查集&种类并查集&带权并查集

    并查集&种类并查集&带权并查集 前言: 因为是学习记录,所以知识讲解+例题推荐+练习题解都是放在一起的qvq 目录 并查集基础知识 并查集基础题目 种类并查集知识 种类并查集题目 并查 ...

  9. 51nod1459(带权值的dijkstra)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1459 题意:中文题诶- 思路:带权值的最短路,这道题数据也没 ...

随机推荐

  1. List、Set、Map 是否继承自 Collection 接口?

    List.Set 是,Map 不是.Map 是键值对映射容器,与 List 和 Set 有明显的区别, 而 Set 存储的零散的元素且不允许有重复元素(数学中的集合也是如此),List 是线性结构的容 ...

  2. 180度\360度sg90舵机的使用及代码程序

    大部资料都是在网上找到网友大神所共享的,在网上找了几种舵机的,刚接触有点懵,之后找得多了就理解了,想要控制一个硬件就要先了解这个硬件.这里有介绍180度舵机和360度舵机的具体使用,有网上大神的程序, ...

  3. 转载:介绍AD另外一种奇葩的多通道复用的方法

    原文链接:http://www.eda365.com/forum.php?_dsign=74fe4957&mod=viewthread&page=1&tid=110710 在设 ...

  4. 【二次元的CSS】—— 纯CSS3做的能换挡的电扇

    这次分享的电扇,和以往用css3画人物相比 多加了一点交互,就是电扇开关的地方,用到了一点点css3的 :checked +div 这个很少用到的选择器来实现的. GitHub传送门:https:// ...

  5. 如何做好移动端的响应式设计:Viewport控制

    新人翻译,欢迎转载~ 英文原文地址:http://bitsofco.de/2015/respove-design-viewport/ 原文例程地址:https://github.com/ireade/ ...

  6. 利用AudioContext来实现网易云音乐的鲸鱼音效

    一直觉得网易云音乐的用户体验是很不错的,很早就注意到了里面的鲸鱼音效,如下图,就是一个环形的跟着音乐节拍跳动的特效. gif动图可能效果不太理想,可以直接在手机上体验 身为前端凭着本能的好奇心和探索心 ...

  7. C#编写程序,找一找一个二维数组中的鞍点

    编写程序,找一找一个二维数组中的鞍点(即该位置上的元素值在行中最大,在该列上最小.有可能数组没有鞍点).要求: 1.二维数组的大小.数组元素的值在运行时输入: 2.程序有友好的提示信息. 代码: us ...

  8. IDEA个人常用快捷键

    Ctrl+Z:撤销 Ctrl+Shift+Z:重做 Ctrl+X:剪贴 Ctrl+C:复制 Ctrl+V:粘贴 Ctrl+Y:删除当前行 Ctrl+D:复制当前行 Alt+向左箭头:返回上次光标位置 ...

  9. 前端复制粘贴文字clipBoard.js的使用

    1. vue  中的复制粘贴: <div class="mainTextItem" @click="copyTXTOne" id="copyOn ...

  10. Vue脚手架结构及vue-router路由配置

    首先官网介绍,用 Vue.js + vue-router 创建单页应用,是非常简单的.使用 Vue.js ,我们已经可以通过组合组件来组成应用程序,当你要把 vue-router 添加进来,我们需要做 ...