NetworkX是一个非常强大的网络科学工具,它封装了图的数据结构和许多经典图算法,也内置了许多可视化函数可供调用。

1. 随机图生成

最经典的随机图当属我们在上一篇博客《Erdos-Renyi随机图的生成方式及其特性》中讲到的Erdős-Rény随机图了,我们这里选用其中的\(_{np}\)形式,调用以下API:

G = nx.erdos_renyi_graph(10, 0.3, seed=1)

这里表示生成10个顶点的图,且图的每条边都以0.3的概率产生。

当然,此时生成的图不具有权重,我们想在此基础上均匀随机初始化[0, 0.4]之间的权重,可以这样写:

G = nx.Graph()
for u, v in nx.erdos_renyi_graph(10, 0.3, seed=1).edges():
G.add_edge(u, v, weight=random.uniform(0, 0.4))

2. 2D布局可视化

随机图生成好之后,我们就要对其进行可视化了。首先我们需要计算每个节点在图中摆放的位置,经典的Fruchterman-Reingold force-directed 算法可以完成这个操作,对应NetworkX中的spring_layout函数:

pos = nx.spring_layout(G, iterations=20) #我们设算法迭代次数为20次

然后就可以分别绘制图的边、节点和节点标签了:

nx.draw_networkx_edges(G, pos, edge_color="orange")
nx.draw_networkx_nodes(G, pos, node_color="black")
nx.draw_networkx_labels(G, pos, font_color="white")
plt.show()

绘图结果如下:

当然,这样图的权值是无法体现于图上的,如果我们需要图的权值体现于图上,可以使图中边的宽度按照权值大小来设置:

nx.draw_networkx_edges(G,pos, width=[float(d['weight']*10) for (u,v,d) in G.edges(data=True)], edge_color="orange")
nx.draw_networkx_nodes(G,pos, node_color="black")
nx.draw_networkx_labels(G, pos, font_color="white")
plt.show()

此时的绘图结果如下:

3. 3D布局可视化

如果你觉得2D布局过于扁平,还不够直观地体现节点之间的拓扑关系,那你可以采用如下的代码对图进行三维可视化:

# 3d spring layout
pos = nx.spring_layout(G, dim=3, seed=779)
# Extract node and edge positions from the layout
node_xyz = np.array([pos[v] for v in sorted(G)])
edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()]) # Create the 3D figure
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d") # Plot the nodes - alpha is scaled by "depth" automatically
ax.scatter(*node_xyz.T, s=100, ec="w") # Plot the edges
for vizedge in edge_xyz:
ax.plot(*vizedge.T, color="tab:gray") def _format_axes(ax):
"""Visualization options for the 3D axes."""
# Turn gridlines off
ax.grid(False)
# Suppress tick labels
for dim in (ax.xaxis, ax.yaxis, ax.zaxis):
dim.set_ticks([])
# Set axes labels
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z") _format_axes(ax)
fig.tight_layout()
plt.show()

此时的绘图结果如下:

参考

用NetworkX生成并绘制(带权)无向图的更多相关文章

  1. POJ 2631 DFS+带权无向图最长路径

    http://poj.org/problem?id=2631 2333水题, 有一个小技巧是说随便找一个点作为起点, 找到这个点的最远点, 以这个最远点为起点, 再次找到的最远点就是这个图的最远点 证 ...

  2. 带权图的最短路径算法(Dijkstra)实现

    一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带 ...

  3. 双缓冲绘图和窗口控件的绘制——ATL ActiveX 窗口控件生成向导绘制代码OnDraw的一个错误 .

    双缓冲绘图和窗口控件的绘制 ---ATL ActiveX 窗口控件生成向导绘制代码OnDraw的一个错误 cheungmine 我们通常使用ATL COM组件,生成一个带窗口的ActiveX控件,然后 ...

  4. 某种带权有向无环图(graph)的所有路径的求法

    // 讨论QQ群:135202158 最近做某个东西,最后用图实现了,这里总结一下算法. 假设有以下带权有向无环图(连通或非连通,我这里用的是非连通的): 每个节点(node)可能与其他节点有向地相连 ...

  5. poj 2492 A Bug's Life【带权并查集】

    就是给一个无向图判是否有奇环 用带权并查集来做,边权1表示连接的两个节点异性,否则同性,在%2意义下进行加法运算即可,最后判相同的时候也要%2,因为可能有负数 #include<iostream ...

  6. Python绘制拓扑图(无向图)、有向图、多重图。最短路径计算

    前言: 数学中,“图论”研究的是定点和边组成的图形. 计算机中,“网络拓扑”是数学概念中“图”的一个子集.因此,计算机网络拓扑图也可以由节点(即顶点)和链路(即边)来进行定义和绘制. 延伸: 无向图 ...

  7. 有向网络(带权的有向图)的最短路径Dijkstra算法

    什么是最短路径? 单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值) 什么是最短路径问题? 给定一带权图,图中每条边的权值是非负的,代表着两顶点 ...

  8. 浅谈并查集&种类并查集&带权并查集

    并查集&种类并查集&带权并查集 前言: 因为是学习记录,所以知识讲解+例题推荐+练习题解都是放在一起的qvq 目录 并查集基础知识 并查集基础题目 种类并查集知识 种类并查集题目 并查 ...

  9. 51nod1459(带权值的dijkstra)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1459 题意:中文题诶- 思路:带权值的最短路,这道题数据也没 ...

随机推荐

  1. Oracle 数据库备份实战

    最近公司的客户希望使用oracle数据库,所以我们只好将数据从mysql数据库迁移到oracle数据库,并对oracle数据库制定了一个备份策略,之前虽然对oracle很熟悉,但做备份策略还是第一次, ...

  2. 微信APP支付V3版本签名 && APP下单/订单查询接口Python版实现

    问题背景 最近接入微信支付,微信官方并没有提供Python版的服务端SDK,因而只能根据文档手动实现一版,这里记录一下微信支付的整体流程.踩坑过程与最终具体实现. 微信支付APP下单流程 根据微信官方 ...

  3. MM32F0020 UART1硬件自动波特率的使用

    目录: 1.MM32F0020简介 2.UART自动波特率校准应用场景 3.MM32F0020 UART自动波特率校准原理简介 4.MM32F0020 UART1 NVIC硬件自动波特率配置以及初始化 ...

  4. 带你玩转prefetch, preload, dns-prefetch,defer和async

    现代浏览器性能优化-JS篇 众所周知,JS的加载和执行会阻塞浏览器渲染,所以目前业界普遍推荐把script放到</body>之前,以解决js执行时找不到dom等问题.但随着现代浏览器的普及 ...

  5. CSS - 定位属性position使用详解(static、relative、fixed、absolute)

    position 属性介绍 (1)position 属性自 CSS2 起就有了,该属性规定元素的定位类型.所有主流浏览器都支持 position 属性. (2)position 的可选值有四个:sta ...

  6. C# 委托专题

    单播委托:一个委托只指向一个方法: 多播委托:一个委托指向多个方法,形成一个方法链: Main是静态方法,里面只能引用静态方法,而不能引用实例方法: Main可以进行类的实例化,然后引用实例化后的方法 ...

  7. 深度学习(三)之LSTM写诗

    目录 数据预处理 构建数据集 模型结构 生成诗 根据上文生成诗 生成藏头诗 参考 根据前文生成诗: 机器学习业,圣贤不可求.临戎辞蜀计,忠信尽封疆.天子咨两相,建章应四方.自疑非俗态,谁复念鹪鹩. 生 ...

  8. Blazor 国际化多语言界面 (I18nText )

    在实际使用中,我们经常会遇到需要把程序界面多种语言切换,适应不同地区使用者的需求,本文介绍一个我初学Blazor接触到的库,边撸边讲解. 包名: Toolbelt.Blazor.I18nText ht ...

  9. SpringCloud Alibaba入门之Nacos(SCA)

    SpringCloud Alibaba Spring Cloud Alibaba 致力于提供微服务开发 的一站式解决方案.此项目包含开发分布式应用微服务的必需组件,方便开发者通过 Spring Clo ...

  10. Intel主板芯片组

    写这个的初衷还是由于linux内核本身就是硬件的抽象,如果你对硬件的相关发展,机制以及架构不了解,实际你也是看不懂linux内核代码以及看不懂linux很多命令输出的结果的,如果你看内核代码就会发现内 ...