Python算法之动态规划(Dynamic Programming)解析:二维矩阵中的醉汉(魔改版leetcode出界的路径数)
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_168
现在很多互联网企业学聪明了,知道应聘者有目的性的刷Leetcode原题,用来应付算法题面试,所以开始对这些题进行“魔改”,比如北京某电商平台的这道题:
有一个正方形的岛,使用二维方形矩阵表示,岛上有一个醉汉,每一步可以往上下左右四个方向之一移动一格,如果超出矩阵范围他就死了,假设每一步的方向都是随机的(因为他是醉的),请计算n步以后他还活着的概率。
例如:输入矩阵大小2*2,起点(0,0),随机走出一步 n = 1
输出0.5 也就是有一半的几率还活着
例如:输入矩阵大小3*3,起点(1,1),随机走出一步 n = 1
输出1 也就是百分之百还活着
乍一看有点懵,但是提取关键字:二维矩阵、上下左右四个方向、矩阵范围、n步,有没有感到很熟悉?刷过Leetcode的同学一定已经联想到了Leetcode原题第576题:出界的路径数,难度等级为中等。
给定一个 m × n 的网格和一个球。球的起始坐标为(i,j),你可以将球移到相邻的单元格内,或者往上、下、左、右四个方向上移动使球穿过网格边界。但是,你最多可以移动N次。找出可以将球移出边界的路径数量。答案可能非常大,返回 结果 mod 109+ 7 的值。
和魔改版的题联系起来,所谓醉汉“死了”,其实就是移出边界,而每走一步都会有四种可能,所以所谓的“存活率”也就是当我们算出移出边界的路径数量之后,再除以方向的基数4,就可以算出“存活率”,相反也可以推算“死亡率”,归根结底,魔改版题的题眼还是算出移出边界的路径数,并不是最后问的“存活率”问题,这题只是用了一个并不是很讲究的障眼法,很有可能是该电商平台老板让手下的某个研发出道算法题招人用,而该研发已经被需求搞的晕头转向,无奈之下随便从leetcode复制了一道出来,随便改了改。
至于解法,下意识想到并且非常好理解的解法就是利用BFS(Breadth First Search 广度优先),因为醉汉最多只能移动N次,我们只要bfs依次遍历如果发现出界,就代表死亡,进行累加1,当bfs的深度大于N的时候break结束。理论上是没有任何问题。
import collections
def how_likely_alive(m,n,N,i,j):
mod = 10**9 + 7
Q = collections.deque([(i,j,0)])
res = 0
while Q:
x,y,step = Q.popleft()
if step > N: break
if 0<=x<m and 0<=y<n:
Q.append((x+1,y,step+1))
Q.append((x-1,y,step+1))
Q.append((x,y+1,step+1))
Q.append((x,y-1,step+1))
else:
res += 1
num = res % mod
if num == 0:
return 1
else:
return num / 4
print(how_likely_alive(2,2,1,0,0))
一般情况下,如果该岗位的技术要求并不高,使用bfs基本就算过关了,但是如果面试官想来一次压力面试(所谓压力面试就是想探探你的底),看看你的极限在哪里,就会要求你用效率更高的算法来解题。(这里需要简单分辨一下压力面试还是故意刁难,压力面试如果不会的话,礼貌询问就能拿到答案,而如果连面试官都不知道面试的答案,那肯定就是故意刁难了,也就没有面下去的必要了)。
我们再回到题目中想一想,魔改版题目并没有定义醉后随机走的步数N的范围,假设N的取值范围达到了50,我们对任意一个坐标点bfs有四个方向进行遍历,同时考虑往回走的可能性,那么复杂度达到了N的四倍,这个效率显然不会令人满意,所以当N相对小的情况下,比如只走1步,bfs是最优解,而范围过大就需要考虑dp了。
dp(Dynamic Programming)算法即是业界大名鼎鼎的动态规划算法了,其核心思路是把一个复杂的大问题拆成若干个子问题,通过解决子问题来逐步解决大问题,是不是和分治法有点像?关于分治算法可以参考这篇文章:当我们谈论算法我们在谈论什么:由疫情核酸检测想到的分治算法(Divide-and-Conquer),但是和分治法有区别的地方是,使用动态规划思想有个前提:当且仅当每个子问题都是离散的(即每个子问题都不依赖于其他子问题时),才能使用动态规划。
再次回到题目,假设这个醉汉在第 N 步到达 (mi, nj) 位置有 dp[N][mi][nj] 种路径,可以假设一下当前状态如何从上一步移动中得来。其实就是上下左右四个方向移动过来的,而移动步数则是 N-1。
def how_likely_alive(m, n, N, i, j):
tmp=[[[0 for i in range(n)] for j in range(m)] for k in range(N+1)]
for k in range(1,N+1):
for p in range(m):
for q in range(n):
if 0==p:
up=1
else:
up=tmp[k-1][p-1][q]
if m-1==p:
down=1
else:
down=tmp[k-1][p+1][q]
if 0==q:
left=1
else:
left=tmp[k-1][p][q-1]
if n-1==q:
right=1
else:
right=tmp[k-1][p][q+1]
tmp[k][p][q]=(up+down+left+right)%1000000007
num = tmp[N][i][j]
if num == 0:
return 1
else:
return num / 4
return num
print(how_likely_alive(2,2,1,0,0))
结语:Leetcode算法题浩如烟海,想要每一道题都了如指掌,个人感觉难度不小,但是从这道二维矩阵中的醉汉来看,企业就算想要“魔改”,也是万变不离其宗,多多少少都有迹可循,所以我们在刷题的过程中,应该本着宁缺毋滥的原则,真实的掌握算法核心思想,才能够做到举一反三、百战不殆。
原文转载自「刘悦的技术博客」 https://v3u.cn/a_id_168
Python算法之动态规划(Dynamic Programming)解析:二维矩阵中的醉汉(魔改版leetcode出界的路径数)的更多相关文章
- [算法总结] 动态规划 (Dynamic Programming)
本文组织结构如下: 前言 最长公共子序列(LCS) 最长不下降子序列(LIS) 最大连续子序列之和 最长回文子串 数塔问题 背包问题(Knapsack-Problem) 矩阵链相乘 总结 前言 在学过 ...
- 01二维矩阵中最大全为1的正方形maxSquare——经典DP问题(二维)
在一个二维01矩阵中找到全为1的最大正方形 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 以矩阵中每一个点作为正方形右下角点来处理,而以该点为右下角点的最大边长最多比 ...
- java代码生成二维码以及解析二维码
package com.test; import java.awt.Color; import java.awt.Graphics2D; import java.awt.image.BufferedI ...
- Leetcode之二分法专题-240. 搜索二维矩阵 II(Search a 2D Matrix II)
Leetcode之二分法专题-240. 搜索二维矩阵 II(Search a 2D Matrix II) 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵 ...
- [Leetcode] search a 2d matrix 搜索二维矩阵
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...
- 动态规划(Dynamic Programming)算法与LC实例的理解
动态规划(Dynamic Programming)算法与LC实例的理解 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Le ...
- 算法导论学习-Dynamic Programming
转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...
- 动态规划Dynamic Programming
动态规划Dynamic Programming code教你做人:DP其实不算是一种算法,而是一种思想/思路,分阶段决策的思路 理解动态规划: 递归与动态规划的联系与区别 -> 记忆化搜索 -& ...
- 6专题总结-动态规划dynamic programming
专题6--动态规划 1.动态规划基础知识 什么情况下可能是动态规划?满足下面三个条件之一:1. Maximum/Minimum -- 最大最小,最长,最短:写程序一般有max/min.2. Yes/N ...
随机推荐
- 923. 3Sum With Multiplicity - LeetCode
Question 923. 3Sum With Multiplicity Solution 题目大意: 给一个int数组A和一个目标值target,求满足下面两个条件的组合个数,其中i,j,k分别为数 ...
- 好客租房24-react中的事件处理(事件绑定)
3.1事件绑定 React事件绑定语法和DOM事件语法相似 语法:on+事件名称={事件处理程序} 比如οnclick={()=>{}} //导入react import React f ...
- unity---3D数学基础
点乘 A·B 判断敌人在前方还是后方 调试画线 画线段 前两个参数 分别是 起点 终点 画射线 前两个参数 分别是 起点 方向 Debug.DrawLine(this.transform.positi ...
- AOSP查看当前要打进系统里的都有哪些包
发现问题: 修改系统时常常需要预置APK,这就要修改PRODUCT_PACKAGES这个变量,那么如何查看这个数组的值呢?我们可能直接在mk文件中去打印它,后来发现打印它只会显示继承关系(即继承自了哪 ...
- MQ 简介
每日一句 You must try things that may not work. And you must not let anyone define your limits because o ...
- Mac下iTerm2安装rzsz后上传下载失败解决
背景描述 mac环境,安装了iTerm2,需要使用ssh登陆linux服务器.服务器登陆需要经过以下步骤 输入token 输入登陆选项 输入IP 因此写了expect脚本来完成自动输入 但是在上传下载 ...
- Abp Vnext源码解析系列文章01---EventBus
一.简介 BP vNext 封装了两种事件总线结构,第一种是 ABP vNext 自己实现的本地事件总线,这种事件总线无法跨项目发布和订阅.第二种则是分布式事件总线,ABP vNext 自己封装了一个 ...
- 彰显个性│github和gitlab之自定义首页样式
目录 一.个性首页 二.制作步骤 三.修改内容 一.个性首页 相信很多小伙伴在逛 github 和 gitlab 的时候 会发现很多开发者的首页异常的炫酷,如 https://github.com/c ...
- 我是一个Dubbo数据包...
hello,大家好呀,我是小楼! 今天给大家带来一篇关于Dubbo IO交互的文章,本文是一位同事写的文章,用有趣的文字把枯燥的知识点写出来,通俗易懂,非常有意思,所以迫不及待找作者授权然后分享给大家 ...
- 快速 IO
IO 的进化史 cin和cout 刚开始学的时候,老师叫我们用 cin 和 cout 大概是因为这最简单吧 cin>>x; cout<<x scanf和printf 学到函数了 ...