Strongly connected
hdu4635:http://acm.hdu.edu.cn/showproblem.php?pid=4635
题意:给你一个有向图,然后问你最多可以加多少条边,是的原图不是一个强连通图。
题解:这一题确实不会,图论做的太少了,一下是一个人分析,觉得分析的很不错,代码也是看别人的。
首先强连通缩点,缩点之后,最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边; *那么要使得边数尽可能的多,则X部肯定是一个完全图,Y部也是,同时X部中每个点到Y部的每个点都有一条边; *假设X部有x个点,Y部有y个点,则x+y=n; 同时边数F=x*y+x*(x-1)+y*(y-1),然后去掉已经有了的边m,则为答案; 当x+y为定值时,二者越接近,x*y越大,所以要使得边数最多,那么X部和Y部的点数的个数差距就要越大; 对于给定的有向图缩点,对于缩点后的每个点,如果它的出度或者入度为0,那么它才有可能成为X部或者Y部; 然后找出最大值即可;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=;
const int M=;
const int INF=0xffffffff;
struct Edge{
int to,next;
} edge[M]; int n,m,cnt,dep,top,atype;
int dfn[N],low[N],vis[N],head[N],st[N],belong[N],in[N],out[N],sum[N];
//sum[i]记录第i个连通图的点的个数,in[i],out[i],表示缩点之后点的入度和初度。
void init(){
cnt=dep=top=atype=;
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(vis,,sizeof(vis));
memset(belong,,sizeof(belong));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
memset(sum,,sizeof(sum));
}
void addedge(int u,int v){
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
} void Tarjan(int u){
dfn[u]=low[u]=++dep;
st[top++]=u;
vis[u]=;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(vis[v]){
low[u]=min(low[u],dfn[v]);
}
}
int j;
if(dfn[u]==low[u]){
atype++;
do{
j=st[--top];
belong[j]=atype;
sum[atype]++; //记录每个连通分量中点的个数
vis[j]=;
}
while(u!=j);
}
} long long solve(){
if(n==){
return -;
}
init();
int u,v;
for(int i=; i<m; i++){
scanf("%d%d",&u,&v);
addedge(u,v);
}
for(int i=; i<=n; i++)
if(!dfn[i])
Tarjan(i);
if(atype==){
return -;
}
for(int u=; u<=n; u++)
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].to;
if(belong[u]!=belong[v]){
out[belong[u]]++;
in[belong[v]]++;
}
}
long long tmp=;
for(int i=; i<=atype; i++)
if(in[i]== || out[i]==){
tmp=min(tmp,(long long)sum[i]);
}
return tmp*(tmp-)+(n-tmp)*(n-tmp-)+tmp*(n-tmp)-m;
}
int cas;
int main(){
scanf("%d",&cas);
int tt=;
while(cas--){
scanf("%d%d",&n,&m);
printf("Case %d: %I64d\n",tt++,solve());
}
return ;
}
Strongly connected的更多相关文章
- PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph. Format of functions: void St ...
- algorithm@ Strongly Connected Component
Strongly Connected Components A directed graph is strongly connected if there is a path between all ...
- cf475B Strongly Connected City
B. Strongly Connected City time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- Strongly connected(hdu4635(强连通分量))
/* http://acm.hdu.edu.cn/showproblem.php?pid=4635 Strongly connected Time Limit: 2000/1000 MS (Java/ ...
- 【CF913F】Strongly Connected Tournament 概率神题
[CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...
- HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...
- HDU4625:Strongly connected(思维+强连通分量)
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
随机推荐
- lambda与函数调用的转换
14.38 编写一个类令其检查某个给定的string对象的长度是否与一个阈值相等.使用该对象编写程序,统计并报告在输入的文件中长度为1的单词有多少个,长度为2的单词有多少个.......长度为10的单 ...
- 初步掌握HBase
1.HBase概述 HBase是hadoop生态系统中的重要组成部分,是一个开源的.面向列.适合存储海量非结构化数据或半结构化数据,具备高可靠性.高性能.可灵活扩展伸缩.支持实时数据读写的分布式存储系 ...
- 从源码角度深入理解Handler
为了获得良好的用户体验,Android不允许开发者在UI线程中调用耗时操作,否则会报ANR异常,很多时候,比如我们要去网络请求数据,或者遍历本地文件夹都需要我们在新线程中来完成,新线程中不能更新UI, ...
- 第六篇:web之python框架之django
python框架之django python框架之django 本节内容 web框架 mvc和mtv模式 django流程和命令 django URL django views django te ...
- sqlserver 启用邮箱服务
1,打开数据库,找到管理 找到数据库邮件,单击右键选择配置 2,直接下一步 3. 4 填写基本的配置信息,邮箱密码不要写错了. 不然到时候发不出去邮件,也不会报错! 直接点击下一步.然后完成.. 到了 ...
- [DEncrypt] DESEncrypt--加密/解密帮助类 (转载)
点击下载 DESEncrypt.zip 这个类是关于加密,解密的操作,文件的一些高级操作1.DESEncrypt加密2.DESEncrypt解密看下面代码吧 /// <summary> / ...
- IXListView的自我分析一
XListView是一个很不错的用来刷新和加载的控件,下拉刷新和上拉加载.目前这个控件已经没有更新,这个不重要,重要的是它确实还不错,之后可能一直有人在用. android没有提供原生的这类控件,需要 ...
- 容易被忽略的两个方法:onSaveInstanceState()和onRestoreInstanceState()
onSaveInstanceState()和onRestoreInstanceState()两个方法,在Activity中是比较容易忽视的方法,但是不得不说还是比较好用的方法,onSaveInstan ...
- MyBatis的学习总结六:Mybatis的缓存【参考】
一.Mybatis缓存介绍 正如大多数持久层框架一样,Mybatis同样提供了一级缓存和二级缓存 1.一级缓存:基于PerpetualCache的HashMap本地缓存,其存储作用域为Session, ...
- 关于vs2008使用oracleclient链接oracle数据库报报错OCIEnvCreate 失败,返回代码为 -1,但错误消息文本不可用
用vs2008链接oracle数据库出现问题,报错OCIEnvCreate 失败,返回代码为 -1,但错误消息文本不可用,从网上找了好久方法,有两种oracle客户端文件权限,和运行vs2008以管理 ...