题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5176

AX+BY = XY  => (X-B)*(Y-A)= A*B

对A*B因式分解,这里不要乘起来,分A,B因式分解

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<map>
#include<set>
#include<cmath>
#include<sstream>
#include<queue> #define MAXN 105000
#define PI acos(-1.0)
#define LL long long
#define REP(i,n) for(int i=0; i<n; i++)
#define FOR(i,s,t) for(int i=s; i<=t; i++)
#define show(x) { cerr<<">>>"<<#x<<" = "<<x<<endl; }
#define showtwo(x,y) { cerr<<">>>"<<#x<<"="<<x<<" "<<#y<<" = "<<y<<endl; }
using namespace std; LL A,B,X,Y,ansX,ansY,M;
int prime[MAXN],cnt; //生成质数表
LL sum_AB;
struct Factor
{
int p,k; //p^k;
}a[];
int pv; void get_prime()
{
bool flag[MAXN];
memset(flag,,sizeof(flag));
cnt = ; for(int i=; i<MAXN; i++)
{
if(!flag[i])
{
prime[cnt++] = i;
for(int j=i+i; j<MAXN; j+=i) flag[j] = true;
}
}
} void factor_analysis(int c,int d)
{
pv = ;
for(int i=; i<cnt && (c||d); i++)
{
if(c%prime[i] == || d%prime[i] == )
{
a[pv].p = prime[i];
a[pv].k = ;
while(c % prime[i] == ) a[pv].k++,c /= prime[i];
while(d % prime[i] == ) a[pv].k++,d /= prime[i];
pv++;
}
}
if(c != ) a[pv].p = c,a[pv].k = ,pv++;
if(d != ) a[pv].p = d,a[pv].k = ,pv++;
} void dfs(int pos,long long mul)
{
if(pos == pv && sum_AB % mul == )
{
X = mul + B;
Y = sum_AB / mul + A;
if(X >= M && (ansX+ansY > X+Y || (ansX+ansY == X+Y && ansX > X)))
ansX = X, ansY = Y;
return;
}
long long accu = ;
for(int i=; i<=a[pos].k; i++)
{
dfs(pos+,mul*accu);
accu *= a[pos].p;
}
} int main()
{
//freopen("E:\\acm\\input.txt","r",stdin);
get_prime();
while(scanf("%lld %lld %lld",&A,&B,&M) == )
{
sum_AB = A*B;
factor_analysis(A,B);
ansX = 1e18+, ansY = ;
dfs(,); if(ansX == 1e18+ ) printf("No answer\n");
else printf("%lld %lld\n",ansX,ansY);
}
}

zoj Simple Equation 数论的更多相关文章

  1. Ural 2003: Simple Magic(数论&思维)

    Do you think that magic is simple? That some hand-waving and muttering incomprehensible blubber is e ...

  2. Codeforces 919E Congruence Equation ( 数论 && 费马小定理 )

    题意 : 给出数 x (1 ≤ x ≤ 10^12 ),要求求出所有满足 1 ≤ n ≤ x 的 n 有多少个是满足 n*a^n  = b ( mod p ) 分析 : 首先 x 的范围太大了,所以使 ...

  3. Hough Transform

    Hough Transform Introduction: The Hough transform is an algorithm that will take a collection of poi ...

  4. Applying Eigenvalues to the Fibonacci Problem

    http://scottsievert.github.io/blog/2015/01/31/the-mysterious-eigenvalue/ The Fibonacci problem is a ...

  5. Data Visualization – Banking Case Study Example (Part 1-6)

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  6. Realtime Rendering 5

    [Real Time Rendering 5] 1.In radiometry, the function that is used to describe how a surface reflect ...

  7. (9)How to take a picture of a black hole

    https://www.ted.com/talks/katie_bouman_what_does_a_black_hole_look_like/transcript 00:13In the movie ...

  8. 【Machine Learning is Fun!】1.The world’s easiest introduction to Machine Learning

    Bigger update: The content of this article is now available as a full-length video course that walks ...

  9. Neural Networks and Deep Learning

    Neural Networks and Deep Learning This is the first course of the deep learning specialization at Co ...

随机推荐

  1. Codeforces Round #359 div2

    Problem_A(CodeForces 686A): 题意: \[ 有n个输入, +\space d_i代表冰淇淋数目增加d_i个, -\space d_i表示某个孩纸需要d_i个, 如果你现在手里 ...

  2. JAVA自学之-----FileInputStream类

    1, FileInputStream类函数创建: package coreJava; import java.io.FileInputStream; import java.io.IOExceptio ...

  3. Classifying plankton with deep neural networks

    Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...

  4. WAF 与 RASP 的安装使用大比拼!

    什么是WAF和RASP? WAF全称是Web application firewall,即 Web 应用防火墙.RASP 全称是 Runtime Application Self-protect,即应 ...

  5. js设置radio选中

    在页面数据绑定时,经常会遇到给radio设置选中,以下是我写的js方法,经测试可以使用.欢迎拍砖 <html> <head> <script type="tex ...

  6. jacob访问ocx控件方法和遇到的问题

    最近在进行摄像机的二次开发,摄像机厂商提供了使用C++开发的ocx控件:所以尝试使用jacob来进行访问. 操作步骤如下: 1, 从官网(http://sourceforge.net/projects ...

  7. Tomcat 系统架构与设计模式,第 2 部分: 设计模式分析

    门面设计模式 门面设计模式在 Tomcat 中有多处使用,在 Request 和 Response 对象封装中.Standard Wrapper 到 ServletConfig 封装中.Applica ...

  8. RecyclerView一个奇怪的npe异常

    java.lang.NullPointerException at android.support.v7.widget.RecyclerView.computeVerticalScrollOffset ...

  9. 转载爱哥自定义View系列--Canvas详解

    上面所罗列出来的各种drawXXX方法就是Canvas中定义好的能画什么的方法(drawPaint除外),除了各种基本型比如矩形圆形椭圆直曲线外Canvas也能直接让我们绘制各种图片以及颜色等等,但是 ...

  10. JQuery实现点击div以外的位置隐藏该div窗口

    简单示例代码: <body> <script type="text/javascript" src="http://ajax.googleapis.co ...