Higher order Array functions such as filter, map and reduce are great for functional programming, but they can incur performance problems.

var ary = [1,2,3,4,5,6];

var res = ary.filter(function(x, i, arr){
console.log("filter: " + x);
console.log("create new array: " + (arr === ary));
return x%2==0;
})
.map(function(x, i, arr){
console.log("map: " + x);
return x+"!";
})
.reduce(function(r, x, i, arr){
console.log("reduce: " + x);
return r+x;
}); console.log(res); /*
"filter: 1"
"create new array: true"
"filter: 2"
"create new array: true"
"filter: 3"
"create new array: true"
"filter: 4"
"create new array: true"
"filter: 5"
"create new array: true"
"filter: 6"
"create new array: true"
"map: 2"
"map: 4"
"map: 6"
"reduce: 4!"
"reduce: 6!"
"2!4!6!"
*/

In the example, filter & map function will return a new array. That's good because it pushes forward the idea of immutability. However, it's bad because that means I'm allocating a new array. I'm iterating over it only once, and then I've got to garbage-collect it later. This could get really expensive if you're dealing with very large source arrays or you're doing this quite often.

Using RxJS:

var source = Rx.Observable.fromArray([1,2,3,4,5,6]);

source.filter(function(x){
console.log("filter: " + x);
return x%2==0;
})
.map(function(x){
console.log("map: " + x);
return x+"!";
})
.reduce(function(r, x){
console.log("reduce: " + x);
return r+x;
}).subscribe(function(res){
console.log(res);
});
/*
"filter: 1"
"filter: 2"
"map: 2"
"filter: 3"
"filter: 4"
"map: 4"
"reduce: 4!"
"filter: 5"
"filter: 6"
"map: 6"
"reduce: 6!"
"2!4!6!"
*/

The biggest thing is that now you'll see it goes through each -- the filter, the map, and the reduce -- at each step.

Differences:

The first example: it creates two intermediary arrays (during filter and map). Those arrays needed to be iterated over each time, and now they'll also have to be garbage-collected.

The RxJS example:  it takes every item all the way through to the end without creating any intermediary arrays.

[RxJS] Stream Processing With RxJS vs Array Higher-Order Functions的更多相关文章

  1. [CS61A] Lecture 5&6&7. Environments & Design & Functions Examples & Homework 2: Higher Order Functions

    [CS61A] Lecture 5&6&7. Environments & Design & Functions Examples & Homework 2: ...

  2. Storm(2) - Log Stream Processing

    Introduction This chapter will present an implementation recipe for an enterprise log storage and a ...

  3. Stream Processing 101: From SQL to Streaming SQL in 10 Minutes

    转自:https://wso2.com/library/articles/2018/02/stream-processing-101-from-sql-to-streaming-sql-in-ten- ...

  4. Apache Samza - Reliable Stream Processing atop Apache Kafka and Hadoop YARN

    http://engineering.linkedin.com/data-streams/apache-samza-linkedins-real-time-stream-processing-fram ...

  5. Akka(23): Stream:自定义流构件功能-Custom defined stream processing stages

    从总体上看:akka-stream是由数据源头Source,流通节点Flow和数据流终点Sink三个框架性的流构件(stream components)组成的.这其中:Source和Sink是stre ...

  6. 腾讯大数据平台Oceanus: A one-stop platform for real time stream processing powered by Apache Flink

    January 25, 2019Use Cases, Apache Flink The Big Data Team at Tencent     In recent years, the increa ...

  7. Stream processing with Apache Flink and Minio

    转自:https://blog.minio.io/stream-processing-with-apache-flink-and-minio-10da85590787 Modern technolog ...

  8. 13 Stream Processing Patterns for building Streaming and Realtime Applications

    原文:https://iwringer.wordpress.com/2015/08/03/patterns-for-streaming-realtime-analytics/ Introduction ...

  9. 1.2 Use Cases中 Stream Processing官网剖析(博主推荐)

    不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Stream Processing 流处理 Many users of Kafka ...

随机推荐

  1. tornado远远不止

    大家的回答都有点片面,更多的关注web框架成,其实tornado远远不止这些,且听我慢慢到来1.高性能的网络库,这可以和gevent,twisted,libevent等做对.提供了异步io支持,超时事 ...

  2. Java Learning:并发中的同步锁(synchronized)

    引言 最近一段时间,实验室已经倾巢出动找实习了,博主也凑合了一把,结果有悲有喜,BAT理所应当的跪了,也收到了其他的offer,总的感受是有必要夯实基础啊. 言归正传,最近在看到java多线程的时候, ...

  3. [译]36 Days of Web Testing(一)

    [前言]最近负责的一次迭代发布中,一个小需求涉及前端JS改动,在测试这个需求的过程中忽略了浏览器兼容性测试,导致了一个线上bug.恶补下web测试,<36Days of web testing& ...

  4. iOS MD5加密算法

    考虑到用户账户安全,对用户的登录密码进行MD5加密 什么是MD5加密呢...懒了就不在这搬砖了,大家可以自己搜索查查,在此记录下代码,以供以后学习查询! 下面,直接上代码... // 需要倒入这个头文 ...

  5. 安卓天天练练(十)ListView

    ListView不能和ScrollView同时使用,因为它已经包含了滚动支持. 还有个Gallery http://blog.csdn.net/dazlly/article/details/78639 ...

  6. c printf

    printf的格式控制的完整格式:% - 0 m.n l或h 格式字符下面对组成格式说明的各项加以说明:①%:表示格式说明的起始符号,不可缺少.②-:有-表示左对齐输出,如省略表示右对齐输出.③0:有 ...

  7. Unity3D 命令行参数

    Unity3D 命令行参数 @by 广州小龙                                              unity ios开发群:63438968 Typically, ...

  8. 标量子查询优化(用group by 代替distinct)

    标量子查询优化 当使用另外一个SELECT 语句来产生结果中的一列的值的时候,这个查询必须只能返回一行一列的值.这种类型的子查询被称为标量子查询 在某些情况下可以进行优化以减少标量子查询的重复执行,但 ...

  9. Microsoft Internet Explorer 内存破坏漏洞(CVE-2013-3193)(MS13-059)

    漏洞版本: Microsoft Internet Explorer 6 - 10 漏洞描述: BUGTRAQ ID: 61678 CVE(CAN) ID: CVE-2013-3193 Windows ...

  10. MTD应用学习:mtd和mtdblock的区别

    http://my.oschina.net/shelllife/blog/123482 http://www.cnblogs.com/hnrainll/archive/2011/06/09/20760 ...