Description

windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们对应的数字。如此反复,直到序列再次变为1,2,3,……,N。 如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作如下 1 2 3 4 5 6 2 3 1 5 4 6 3 1 2 4 5 6 1 2 3 5 4 6 2 3 1 4 5 6 3 1 2 5 4 6 1 2 3 4 5 6 这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可能的排数。

Input

包含一个整数,N。

Output

包含一个整数,可能的排数。

Sample Input

【输入样例一】
3
【输入样例二】
10

Sample Output

【输出样例一】
3
【输出样例二】
16

HINT

【数据规模和约定】

100%的数据,满足 1 <= N <= 1000 。

Source

首先,我们可以这样思考,每个置换排列都有若干个循环结。e.g. 3 2 1 5 4 6的循环结就是(1,2,3)(4,5)(6),所以它所能变换的排列数为(lcm为最小公倍数)lcm(1,2,3)=6。而1+2+3=6。

所以我们只需要求出满足x1+x2+x3+x4+...xm=n,lcm(x1,x2,x3,...,xm)有多少种。

蒟蒻的我也只能YY到这里了,暴力枚举肯定没戏,剩下的是题解做的了,其实想想应该是能自己策清的。

首先我们令x1+x2+x3+...+xm<=n(如果少了我们可以补1嘛)。再令x1=p1^t1,x2=p2^t2...其中pi为质数且pi≠pj(i≠j),则lcm=∏xi,明显不重复。

然后,我们只需要证明若xi=pi*pj,也可以用lcm也包含在上面的情况。

不妨设pi<pj,则因为p是质数,明显有pi*pj>pi+pj,所以对于这种情况我们在pi,pj的情况中枚举了(少了仍然可以补1)。

因此,我们可以dp了,哈哈哈。

f[i][j]表示前i个质数,何为j的方案数(我们都是拆分成pi^ti的形式,刚刚已经证明了其不可能重复,也包含了所有方案)。转移自己脑补一下吧!!!

 #include<cstdio>
#include<cstdlib>
using namespace std; #define maxn 1010
int n,tot,prime[maxn]; long long f[maxn][maxn],ans; bool exist[maxn]; inline void find()
{
for (int i = ;i <= n;++i)
if (!exist[i])
{
prime[++tot] = i;
for (int j = i*i;j <= n;j += i) exist[j] = true;
}
} inline void dp()
{
f[][] = ;
for (int i = ;i <= tot;++i)
{
for (int j = ;j <= n;++j) f[i][j] = f[i-][j];
for (int j = prime[i];j <= n;j *= prime[i])
{
for (int k = ;k + j <= n;++k)
f[i][k+j] += f[i-][k];
}
}
for (int i = ;i <= n;++i) ans += f[tot][i];
} int main()
{
freopen("1025.in","r",stdin);
freopen("1025.out","w",stdout);
scanf("%d",&n);
find();
dp();
printf("%lld",ans);
fclose(stdin); fclose(stdout);
return ;
}

BZOJ 1025 游戏的更多相关文章

  1. BZOJ 1025 游戏(分组背包)

    题目所谓的序列长度实际上就是各循环节的lcm+1. 所以题目等价于求出 一串数之和等于n,这串数的lcm种数. 由唯一分解定理可以联想到只要把每个素数的幂次放在一个分组里,然后对整体做一遍分组背包就行 ...

  2. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  3. bzoj 5288 游戏

    bzoj 5288 游戏 显然从点 \(x\) 出发,能到达的点是包含 \(x\) 的一段区间.用 \(L,R\) 两个数组记录每个点对应的区间端点. 如果能预处理出 \(L,R\) ,询问显然可以 ...

  4. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  5. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  6. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  7. AC日记——[SCOI2009]游戏 bzoj 1025

    [SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #de ...

  8. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  9. 【BZOJ 1025】[SCOI2009]游戏

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] [题解] 每一个对应关系,里面其实都会生成大小不一的几个环. 每一个环 ...

随机推荐

  1. ArrayList and LinkedList

    ArrayList and LinkedList List代表一种线性表的数据结构,ArrayList则是一种顺序存储的线性表.ArrayList底层采用数组来保存每个集合元素,LinkedList则 ...

  2. Unit Test单元测试时如何模拟HttpContext

    参考文章:http://blog.csdn.net/bclz_vs/article/details/6902638 http://www.cnblogs.com/PurpleTide/archive/ ...

  3. C#自定义泛型类绑定ComboBox控件

    C# WinForm ComboBox 自定义数据项 (ComboBoxItem ) WinForm下的ComboBox默认是以多行文本来设定显示列表的, 这通常不符合大家日常的应用, 因为大家日常应 ...

  4. 构造Nginx避免直接使用IP通路Webserver

    他看上去非常Nginx构造,似乎忽略了ip直接访问Web问题,从理论上讲,这是不利于SEO优化,因此,我们希望能够避免直接使用IP访问该网站,但域名.详细介绍了如何做到这一点,看看下面的. 在官方文件 ...

  5. c++ 文件写样例

    #include <iostream> #include <sstream> #include <fstream>> using namespace std; ...

  6. 如何将你的程序打包成ipa

    ios打包 把需要安装这个app的设备的证书导入xcode中 Archive打包ipa 将打包得到的文件打开,并且显示包内容 找到有相关图标的文件,文件上面有一个禁止符号 将这个文件,拖到itunes ...

  7. oracle查看死锁和处理方法

    在操作数据库中经常会遇到表死锁问题,特别是不良的数据库设计和操作的时候,更容易遇到死锁问题.今天在系统中往oracle中添加数据时,特意快速多点几次添加的时候,就出现了死锁问题,而且刚好在读取和更新表 ...

  8. springmvc xml 空模板

    <?xml version="1.0" encoding="UTF-8"?><!-- Bean头部 --><beans xmlns ...

  9. Python之路【第十七篇】:Django【进阶篇】

    Python之路[第十七篇]:Django[进阶篇 ]   Model 到目前为止,当我们的程序涉及到数据库相关操作时,我们一般都会这么搞: 创建数据库,设计表结构和字段 使用 MySQLdb 来连接 ...

  10. python-字典(第二篇(四):字典)

    [Python之旅]第二篇(四):字典 摘要: 说明:     显然Python中字典的学习过程与列表是一样的,主要是围绕下面的函数来进行重点学习: 1 2 3 4 5 6 7 8 9 10 11 & ...