Description

windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们对应的数字。如此反复,直到序列再次变为1,2,3,……,N。 如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作如下 1 2 3 4 5 6 2 3 1 5 4 6 3 1 2 4 5 6 1 2 3 5 4 6 2 3 1 4 5 6 3 1 2 5 4 6 1 2 3 4 5 6 这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可能的排数。

Input

包含一个整数,N。

Output

包含一个整数,可能的排数。

Sample Input

【输入样例一】
3
【输入样例二】
10

Sample Output

【输出样例一】
3
【输出样例二】
16

HINT

【数据规模和约定】

100%的数据,满足 1 <= N <= 1000 。

Source

首先,我们可以这样思考,每个置换排列都有若干个循环结。e.g. 3 2 1 5 4 6的循环结就是(1,2,3)(4,5)(6),所以它所能变换的排列数为(lcm为最小公倍数)lcm(1,2,3)=6。而1+2+3=6。

所以我们只需要求出满足x1+x2+x3+x4+...xm=n,lcm(x1,x2,x3,...,xm)有多少种。

蒟蒻的我也只能YY到这里了,暴力枚举肯定没戏,剩下的是题解做的了,其实想想应该是能自己策清的。

首先我们令x1+x2+x3+...+xm<=n(如果少了我们可以补1嘛)。再令x1=p1^t1,x2=p2^t2...其中pi为质数且pi≠pj(i≠j),则lcm=∏xi,明显不重复。

然后,我们只需要证明若xi=pi*pj,也可以用lcm也包含在上面的情况。

不妨设pi<pj,则因为p是质数,明显有pi*pj>pi+pj,所以对于这种情况我们在pi,pj的情况中枚举了(少了仍然可以补1)。

因此,我们可以dp了,哈哈哈。

f[i][j]表示前i个质数,何为j的方案数(我们都是拆分成pi^ti的形式,刚刚已经证明了其不可能重复,也包含了所有方案)。转移自己脑补一下吧!!!

 #include<cstdio>
#include<cstdlib>
using namespace std; #define maxn 1010
int n,tot,prime[maxn]; long long f[maxn][maxn],ans; bool exist[maxn]; inline void find()
{
for (int i = ;i <= n;++i)
if (!exist[i])
{
prime[++tot] = i;
for (int j = i*i;j <= n;j += i) exist[j] = true;
}
} inline void dp()
{
f[][] = ;
for (int i = ;i <= tot;++i)
{
for (int j = ;j <= n;++j) f[i][j] = f[i-][j];
for (int j = prime[i];j <= n;j *= prime[i])
{
for (int k = ;k + j <= n;++k)
f[i][k+j] += f[i-][k];
}
}
for (int i = ;i <= n;++i) ans += f[tot][i];
} int main()
{
freopen("1025.in","r",stdin);
freopen("1025.out","w",stdout);
scanf("%d",&n);
find();
dp();
printf("%lld",ans);
fclose(stdin); fclose(stdout);
return ;
}

BZOJ 1025 游戏的更多相关文章

  1. BZOJ 1025 游戏(分组背包)

    题目所谓的序列长度实际上就是各循环节的lcm+1. 所以题目等价于求出 一串数之和等于n,这串数的lcm种数. 由唯一分解定理可以联想到只要把每个素数的幂次放在一个分组里,然后对整体做一遍分组背包就行 ...

  2. [BZOJ 1025] [SCOI2009] 游戏 【DP】

    题目链接:BZOJ - 1025 题目分析 显然的是,题目所要求的是所有置换的每个循环节长度最小公倍数的可能的种类数. 一个置换,可以看成是一个有向图,每个点的出度和入度都是1,这样整个图就是由若干个 ...

  3. bzoj 5288 游戏

    bzoj 5288 游戏 显然从点 \(x\) 出发,能到达的点是包含 \(x\) 的一段区间.用 \(L,R\) 两个数组记录每个点对应的区间端点. 如果能预处理出 \(L,R\) ,询问显然可以 ...

  4. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  5. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  6. bzoj 1025 [SCOI2009]游戏(置换群,DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] 给定n,问1..n在不同的置换下变回原序列需要的不同排数有多少种. [ ...

  7. AC日记——[SCOI2009]游戏 bzoj 1025

    [SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #de ...

  8. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  9. 【BZOJ 1025】[SCOI2009]游戏

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 [题意] [题解] 每一个对应关系,里面其实都会生成大小不一的几个环. 每一个环 ...

随机推荐

  1. 20169210《Linux内核原理与分析》第三周作业

    本次作业也是分为两部分,第一部分是对实验楼<Linux基础入门>复习,第二部分为对课本18章的复习. 第一次学习实验楼的<Linux基础入门>时由于是第一次接触Linux,所以 ...

  2. 开发期间的GWT设置---加快编译速度

    随着项目功能的完善,GWT模块(Module)越来越多,当要以web模式编译给测试组使用时,编译的总时间越来越多,我的机器编译完8个模块,需要10分钟左右. 抽空研究了一下GWT的编译参数和GWT编译 ...

  3. 支持MySql的数据库自动分表工具DBShardTools发布

    支持MySql的数据库自动分表工具DBShardTools发布 前段时间参与了公司的一个项目,这个项目的特点是数据量.访问量都比较大,考虑使用数据库水平分表策略,Google了大半天,竟然没有找到分表 ...

  4. 设计模式22---设计模式之解释器模式(Interpreter)(行为型)

    1.讲解解释器模式 1.1解释器模式定义 给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 1.2解释器模式要点 解析器:把描述客户端调用要求的表达式, ...

  5. WPF DataGrid某列使用多绑定后该列排序失效,列上加入 SortMemberPath 设置即可.

    WPF DataGrid某列使用多绑定后该列排序失效 2011-07-14 10:59hdongq | 浏览 1031 次  悬赏:20 在wpf的datagrid中某一列使用了多绑定,但是该列排序失 ...

  6. CSS样式权值

    内联样式表(InLine style)>内部样式表(Internal style sheet)>外部样式表(External style sheet) 例外:但如果外部样式表放在内部样式表 ...

  7. IIS7.5 asp+access数据库连接失败处理 64位系统

    IIS7.5 asp+access数据库连接失败处理(SRV 2008R2 x64/win7 x64) IIS7.5不支持oledb4.0驱动?把IIS运行模式设置成32位就可以了,微软没有支持出64 ...

  8. java对象与xml相互转换 ---- xstream

    XStream是一个Java对象和XML相互转换的工具,很好很强大.提供了所有的基础类型.数组.集合等类型直接转换的支持. XStream中的核心类就是XStream类,一般来说,熟悉这个类基本就够用 ...

  9. 十一、C# 泛型

    为了促进代码重用,尤其是算法的重用,C#支持一个名为泛型的特性. 泛型与模块类相似. 泛型使算法和模式只需要实现一交.而不必为每个类型都实现一次.在实例化的时候,传入相应的数据类型便可. 注:可空值类 ...

  10. [转]Mysql导入导出工具Mysqldump和Source命令用法详解

    Mysql本身提供了命令行导出工具Mysqldump和Mysql Source导入命令进行SQL数据导入导出工作,通过Mysql命令行导出工具Mysqldump命令能够将Mysql数据导出为文本格式( ...