You may refer to the main idea of MST in graph theory.

http://en.wikipedia.org/wiki/Minimum_spanning_tree

Here is my own interpretation

What is Minimum Spanning Tree?

Given a connected and undirected graph, a spanning tree of that graph is a subgraph that is a tree and connects all the vertices together. A single graph can have many different spanning trees. A minimum spanning tree (MST) or minimum weight spanning tree for a weighted, connected and undirected graph is a spanning tree with weight less than or equal to the weight of every other spanning tree. The weight of a spanning tree is the sum of weights given to each edge of the spanning tree.


How many edges does a minimum spanning tree has?

A minimum spanning tree has (V – 1) edges where V is the number of vertices in the given graph.

Founding MST using Kruskal’s algorithm

1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree
formed so far. If cycle is not formed, include this edge. Else, discard it. 3. Repeat step#2 until there are (V-1) edges in the spanning tree.

Analise

The algorithm is a Greedy Algorithm. The Greedy Choice is to pick the smallest weight edge that does not cause a cycle in the MST constructed so far. Let us understand it with an example: Consider the below input graph.

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9 – 1) = 8 edges.

After sorting:
Weight Src Dest
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5
Now pick all edges one by one from sorted list of edges

1.
 
Pick edge 7-6:
 No cycle is formed, include it.


2. Pick edge 8-2: No cycle is formed, include it.

3.
 
Pick edge 6-5:
 No cycle is formed, include it.


4. Pick edge 0-1: No cycle is formed, include it.

5. Pick edge 2-5: No cycle is formed, include it.

6. Pick edge 8-6: Since including this edge results in cycle, discard it.

7. Pick edge 2-3: No cycle is formed, include it.

8. Pick edge 7-8: Since including this edge results in cycle, discard it.

9. Pick edge 0-7: No cycle is formed, include it.

10. Pick edge 1-2: Since including this edge results in cycle, discard it.

11. Pick edge 3-4: No cycle is formed, include it.

Since the number of edges included equals (V – 1), the algorithm stops here.

Here is the source code demonstrating the procedure.

#include <stdio.h>
#include <stdlib.h>
#include <string.h> // a structure to represent a weighted edge in graph
struct Edge
{
int src, dest, weight;
}; // a structure to represent a connected, undirected and weighted graph
struct Graph
{
// V-> Number of vertices, E-> Number of edges
int V, E; // graph is represented as an array of edges. Since the graph is
// undirected, the edge from src to dest is also edge from dest
// to src. Both are counted as 1 edge here.
struct Edge* edge;
}; // Creates a graph with V vertices and E edges
struct Graph* createGraph(int V, int E)
{
struct Graph* graph = (struct Graph*) malloc( sizeof(struct Graph) );
graph->V = V;
graph->E = E; graph->edge = (struct Edge*) malloc( graph->E * sizeof( struct Edge ) ); return graph;
} // A structure to represent a subset for union-find
struct subset
{
int parent;
int rank;
}; // A utility function to find set of an element i
// (uses path compression technique)
int find(struct subset subsets[], int i)
{
// find root and make root as parent of i (path compression)
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent;
} // A function that does union of two sets of x and y
// (uses union by rank)
void Union(struct subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y); // Attach smaller rank tree under root of high rank tree
// (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot; // If ranks are same, then make one as root and increment
// its rank by one
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
} // Compare two edges according to their weights.
// Used in qsort() for sorting an array of edges
int myComp(const void* a, const void* b)
{
struct Edge* a1 = (struct Edge*)a;
struct Edge* b1 = (struct Edge*)b;
return a1->weight > b1->weight;
} // The main function to construct MST using Kruskal's algorithm
void KruskalMST(struct Graph* graph)
{
int V = graph->V;
struct Edge result[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0; // An index variable, used for sorted edges // Step 1: Sort all the edges in non-decreasing order of their weight
// If we are not allowed to change the given graph, we can create a copy of
// array of edges
qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp); // Allocate memory for creating V ssubsets
struct subset *subsets =
(struct subset*) malloc( V * sizeof(struct subset) ); // Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
} // Number of edges to be taken is equal to V-1
while (e < V - 1)
{
// Step 2: Pick the smallest edge. And increment the index
// for next iteration
struct Edge next_edge = graph->edge[i++]; int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest); // If including this edge does't cause cycle, include it
// in result and increment the index of result for next edge
if (x != y)
{
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
} // print the contents of result[] to display the built MST
printf("Following are the edges in the constructed MST\n");
for (i = 0; i < e; ++i)
printf("%d -- %d == %d\n", result[i].src, result[i].dest,
result[i].weight);
return;
} // Driver program to test above functions
int main()
{
/* Let us create following weighted graph
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
struct Graph* graph = createGraph(V, E); // add edge 0-1
graph->edge[0].src = 0;
graph->edge[0].dest = 1;
graph->edge[0].weight = 10; // add edge 0-2
graph->edge[1].src = 0;
graph->edge[1].dest = 2;
graph->edge[1].weight = 6; // add edge 0-3
graph->edge[2].src = 0;
graph->edge[2].dest = 3;
graph->edge[2].weight = 5; // add edge 1-3
graph->edge[3].src = 1;
graph->edge[3].dest = 3;
graph->edge[3].weight = 15; // add edge 2-3
graph->edge[4].src = 2;
graph->edge[4].dest = 3;
graph->edge[4].weight = 4; KruskalMST(graph); return 0;
}

MST(Kruskal’s Minimum Spanning Tree Algorithm)的更多相关文章

  1. Geeks : Kruskal’s Minimum Spanning Tree Algorithm 最小生成树

    版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/.未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  2. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  3. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  4. 说说最小生成树(Minimum Spanning Tree)

    minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...

  5. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  6. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  7. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  8. [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]

    这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...

  9. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

随机推荐

  1. [Neural Networks] Momentum

    一.目的 加快参数的收敛速度. 二.做法 另第t次的权重更新对第t+1次的权重更新造成影响. 从上式可看出,加入momentum后能够保持权重的更新方向,同时加快收敛.通常alpha的取值为[0.7, ...

  2. 关于js效果不提示就执行了刷新(解决 在h-ui框架中)

    parent.layer.msg('保存成功!<script>setTimeout("window.location.reload();",1100);<\/sc ...

  3. [python]获取字符串类型

    >>>type(value) <class 'type'> >>>isinstance(value,type) True/False

  4. 2016030203 - 首次将内容推送到github中

    参考网址:http://www.cnblogs.com/plinx/archive/2013/04/08/3009159.html 和当你在你的github上创建repository后的提示信息如下 ...

  5. 2016022603 - redis数据类型

    Redis支持5种类型的数据类型 1.字符串:Redis字符串是字节序列.Redis字符串是二进制安全的,这意味着他们有一个已知的长度没有任何特殊字符终止,所以你可以存储任何东西,512兆为上限.[类 ...

  6. Xcode6插件开发

    工欲善其事必先利其器,Xcode是我们做iOS Dev必须掌握的一款开发工具. Xcode本身也是一门Cocoa程序,与其来说它是一个Cocoa程序,是不是意味着,我们可以去动态去让它做某件事,或者监 ...

  7. 前端开发福音!阿里Weex跨平台移动开发工具开源-b

    阿里巴巴今天在Qcon大会上宣布跨平台移动开发工具Weex开放内测邀请.Weex能够完美兼顾性能与动态性,让移动开发者通过简捷的前端语法写出Native级别的性能体验,并支持iOS.安卓.YunOS及 ...

  8. MVC3的一个意外的异常 String was not recognized as a valid Boolean. @using (Html.BeginForm())

    客户的网站放在一个虚拟空间,之间都没有修改过程序.可是网站的后台登录页面报错  String was not recognized as a valid Boolean. ,错误指向@using (H ...

  9. MySQL在创建存储过程的时候,语法正确却提示You have an error in your SQL syntax

    我在使用MySQL工具编写MySQL存储过程的时候,明明语法正确,但是却一直提示You have an error in your SQL syntax. 比如下面一段代码 CREATE PROCED ...

  10. theano中的logisticregression代码学习

    1 class LogisticRegression (object): 2 def __int__(self,...): 3 4 #定义一些与逻辑回归相关的各种函数 5 6 def method1( ...