参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创

视频教程: http://pan.baidu.com/s/1kVNe5EJ

 
0. 机器学习中分类和预测算法的评估:
 
  • 准确率
  • 速度
  • 强壮行
  • 可规模性
  • 可解释性
 
 
 

1. 什么是决策树/判定树(decision tree)?

     
     判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。
 
 

 
 
2.  机器学习中分类方法中的一个重要算法
 
3.  构造决策树的基本算法                   
 
 

 

 
     3.1 熵(entropy)概念:
 
          信息和抽象,如何度量?
          1948年,香农提出了 ”信息熵(entropy)“的概念
          一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者          
          是我们一无所知的事情,需要了解大量信息==>信息量的度量就等于不确定性的多少
          
          例子:猜世界杯冠军,假如一无所知,猜多少次?
          每个队夺冠的几率不是相等的
          
          比特(bit)来衡量信息的多少
 

          
 
          
 
          变量的不确定性越大,熵也就越大
          
 
     3.1 决策树归纳算法 (ID3)
 
          1970-1980, J.Ross. Quinlan, ID3算法
     
          选择属性判断结点
 
          信息获取量(Information Gain):Gain(A) = Info(D) - Infor_A(D)
          通过A来作为节点分类获取了多少信息
 
                
         

类似,Gain(income) = 0.029, Gain(student) = 0.151, Gain(credit_rating)=0.048

 
          所以,选择age作为第一个根节点
 

 
 
          重复。。。
 
 
          算法:
  • 树以代表训练样本的单个结点开始(步骤1)。
  • 如果样本都在同一个类,则该结点成为树叶,并用该类标号(步骤2 和3)。
  • 否则,算法使用称为信息增益的基于熵的度量作为启发信息,选择能够最好地将样本分类的属性(步骤6)。该属性成为该结点的“测试”或“判定”属性(步骤7)。在算法的该版本中,
  • 所有的属性都是分类的,即离散值。连续属性必须离散化。
  • 对测试属性的每个已知的值,创建一个分枝,并据此划分样本(步骤8-10)。
  • 算法使用同样的过程,递归地形成每个划分上的样本判定树。一旦一个属性出现在一个结点上,就不必该结点的任何后代上考虑它(步骤13)。
  • 递归划分步骤仅当下列条件之一成立停止:
  • (a) 给定结点的所有样本属于同一类(步骤2 和3)。
  • (b) 没有剩余属性可以用来进一步划分样本(步骤4)。在此情况下,使用多数表决(步骤5)。
  • 这涉及将给定的结点转换成树叶,并用样本中的多数所在的类标记它。替换地,可以存放结
  • 点样本的类分布。
  • (c) 分枝
  • test_attribute = a i 没有样本(步骤11)。在这种情况下,以 samples 中的多数类
  • 创建一个树叶(步骤12)
 
               
 
 
     3.1 其他算法:
               C4.5:  Quinlan
               Classification and Regression Trees (CART): (L. Breiman, J. Friedman, R. Olshen, C. Stone)
               共同点:都是贪心算法,自上而下(Top-down approach)
               区别:属性选择度量方法不同: C4.5 (gain ratio), CART(gini index), ID3 (Information Gain)
 
     3.2 如何处理连续性变量的属性? 
 
4. 树剪枝叶 (避免overfitting)
     4.1 先剪枝
     4.2 后剪枝
 
 
5. 决策树的优点:
     直观,便于理解,小规模数据集有效     
 
6. 决策树的缺点:
     处理连续变量不好
     类别较多时,错误增加的比较快
     可规模性一般(
     

3.1决策树理论--python深度机器学习的更多相关文章

  1. 1.1机器学习基础-python深度机器学习

    参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创 视频教程: http://pan.baidu.com/s/1kVNe5EJ 1. 课程介绍 2. 机器学习 (Machine Learning, ...

  2. 2基本概念--python深度机器学习

    参考彭亮老师的视频教程:转载请注明出处及彭亮老师原创 视频教程: http://pan.baidu.com/s/1kVNe5EJ 基本概念:训练集,测试集,特征值,监督学习,非监督学习,半监督学习,分 ...

  3. 1.2机器学习基础下--python深度机器学习

    1. 机器学习更多应用举例: 人脸识别   2. 机器学习就业需求:      LinkedIn所有职业技能需求量第一:机器学习,数据挖掘和统计分析人才      http://blog.linked ...

  4. 用Python开始机器学习(2:决策树分类算法)

    http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树 ...

  5. 监督学习——决策树理论与实践(下):回归决策树(CART)

    介绍 决策树分为分类决策树和回归决策树: 上一篇介绍了分类决策树以及Python实现分类决策树: 监督学习——决策树理论与实践(上):分类决策树          决策树是一种依托决策而建立起来的一种 ...

  6. Python开源机器学习框架:Scikit-learn六大功能,安装和运行Scikit-learn

    Python开源机器学习框架:Scikit-learn入门指南. Scikit-learn的六大功能 Scikit-learn的基本功能主要被分为六大部分:分类,回归,聚类,数据降维,模型选择和数据预 ...

  7. Python深度学习读书笔记-1.什么是深度学习

    人工智能 什么是人工智能.机器学习与深度学习(见图1-1)?这三者之间有什么关系?

  8. [resource]23个python的机器学习包

    23个python的机器学习包,从常见的scikit-learn, pylearn2,经典的matlab替代orange, 到最新最酷的Theano(深度学习)和torch 7 (well,其实lua ...

  9. Python相关机器学习‘武器库’

    开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...

随机推荐

  1. GCC的编译和安装 很好的资料

    http://blog.csdn.net/yrj/article/details/492404 1.GCC的编译和安装2.预处理    #define 可以支持不定数量的参数.    例子如下:    ...

  2. SVN 资源库报错 E175002

    遇到一个问题, svn: E175002: OPTIONS request failed on '/' Connection timed out: connect 试了网上好多办法,都没有,最后公司大 ...

  3. Magento网站迁移指南

    "Magento网站迁移指南":关键词:magento 网站 迁移 指南 上周五,为mkt同事迁移了一个从本机到godaddy的magento系统. 中间出了不少状况, 现在写个迁 ...

  4. SQL 存储过程 通过多个ID更新数据 分类: SQL Server 2014-12-08 16:08 299人阅读 评论(0) 收藏

    下面举个例子说明: 我想让一部分品牌的名称(即Brand_Name)后面加上1,Brand_ID是主键,sql语句很容易实现,但是存储过程如何写呢? 错误写法如下: //*************** ...

  5. 2的32次方 分类: C#小技巧 2014-08-05 18:18 406人阅读 评论(0) 收藏

    版权声明:本文为博主原创文章,未经博主允许不得转载.

  6. 下载的chm手册打不开的解决方法?

    用ie或者chrome等浏览器下载文件的时候,都会给文件加上一个默认的保护,右键这个文件,打开属性对话框,然后在第一个的选项卡的安全的部分,有个解除这个保护的按钮点下然后确定保存,再打开chm文件就不 ...

  7. Delphi十进制和十六进制互转

    Delphi 自带函数 IntToHex 功能说明:该函数用于将“十进制”转换成“十六进制”.该函数有二个参数.第一个参数为要转换的十进制数据,第二个参数是指定使用多少位来显示十六进制数据. 参考实例 ...

  8. Java设计模式03:常用设计模式之单例模式(创建型模式)

    1.  Java之单例模式(Singleton Pattern ) 单例模式是一种常见的设计模式,单例模式分三种:懒汉式单例.饿汉式单例.登记式单例三种. 单例模式有一下特点: 1.单例类只能有一个实 ...

  9. Xcode6 viewDidLoad 中View的subviews 为空

    Xcode 6  中勾选using size Classes 方法,在ViewDidLoad 方法中调用outlet 的一个myView.subviews 会为空,而myView 不会为空. stor ...

  10. 在ec2上创建root用户,并使用root 通过Xshell远程登录aws云服务器

    1.根据官网提供的方法登录连接到EC2服务器(官网推荐windows用户使用PUTTY连接) 2. 创建root的密码,输入如下命令: sudo passwd root 3.然后会提示你输入new p ...