我不是传送门

题意 : 中文题目不解释

求gcd(x,y) = k (a<=x<=b, c<=y<=d);

根据gcd(ka,kb) = k*gcd(a,b), 可将问题转化为求gcd(a/k, b/k) = 1;

再由容斥定理可得到gcd(x,y) = gcd(b,d)- gcd(a,d)- gcd(c,b)+ gcd(a,c);

再套上莫比乌斯反演的模板, 嗯, 然后就能得到一次TE;

正解 : 容斥+莫比乌斯反演+分块优化;

分块优化 : 考虑到[n/i]、[m/i]都会有大量的完全相等的部分,我们可以把[n/i]、[m/i]都相等的部分放在一起算,也就是一个分块的思想。预处理出μ(d)的前缀和即可。

参考链接

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm> using namespace std;
#define ll long long
const int maxn = ; ll pri[maxn], mu[maxn];
ll vis[maxn]; void init()
{
memset(vis, , sizeof(vis));
memset(mu, , sizeof(mu));
mu[] = ;
int cnt = ;
for(ll i =; i <= ; i++)
{
if(vis[i] == ) {mu[i] = -; pri[cnt++] = i;}
for(ll j =; j < cnt&&i*pri[j] <= ; j++)
{
ll k = i*pri[j];
vis[k] = ;
if(i%pri[j] == ) {mu[k] = ; break; }
else mu[k] = -mu[i];
}
}
for(ll i = ; i <= ; i++) // 前缀和处理mu;
mu[i] += mu[i-];
} ll cal(ll l, ll r) // 分块优化
{
if(l > r) swap(l, r);
ll ans = ;
ll hay = ;
for(ll i = ; i <=l; i = hay+)
{
hay = min(l/(l/i), r/(r/i) );
ans += (mu[hay] - mu[i-])*(l/i)*(r/i);
}
return ans;
} int main()
{
ios::sync_with_stdio(false);
init();
ll n;
cin >> n;
while(n--)
{
ll a, b, c, d, k;
cin >> a >> b >> c >> d >> k;
ll ans = ;
ans = cal(b/k, d/k)+ cal((a-)/k,(c-)/k) - cal((a-)/k, d/k)- cal((c-)/k, b/k);
printf("%lld\n", ans); }
return ;
}

Problem(莫比乌斯反演)的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  3. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...

  4. 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)

    [BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...

  5. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  6. BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6519  Solved: 3026[Submit] ...

  7. BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 436  Solved: 187[Submit][S ...

  8. Problem b 莫比乌斯反演+枚举除法的取值

    莫比乌斯反演+枚举除法的取值 第二种形式: f(n)表示gcd(x,y)=n的数量. F(n)表示gcd(x,y)是n的倍数的数量. /** 题目:Problem b 链接:https://vjudg ...

  9. bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...

随机推荐

  1. day5_递归调用

    #递归的意思,函数自己调用自己#递归最多递归999次#递归的效率没有循环高 实例1-递归调用: count = 0 def say(): global count count += 1 print(' ...

  2. 2018/04/24 PHP 设计模式之注册树模式

    之前学习了工厂模式和单例模式,明白了他们的意义. 但是我们在之后的使用中会发现一个问题,在新建一个实例的时候还是需要调用一个单例或者工厂,之后还是造成了代码和耦合和不好处理. 下面开始说一下: -- ...

  3. 洛谷P4495 奇怪的背包 [HAOI2018] 数论

    正解:数论+dp 解题报告: 传送门! 首先看到这题,跳无数次,自然而然可以想到之前考过好几次了的一个结论——如果只考虑无限放置i,它可以且仅可以跳到gcd(p,v[i]) 举一反三一下,如果有多个i ...

  4. js 进制之间的转换

    //十进制转其他 var x=110; alert(x); alert(x.toString(8)); alert(x.toString(32)); alert(x.toString(16)); // ...

  5. 安装MongoDB报错

    尝试多次,最后找到解决方式: 在安装的最后一步的时候不要勾选左下角的compass即可 命令行mongod --version测试安装是否成功

  6. oracle中in和exists的区别

    IN适合于外表大而内表小的情况:EXISTS适合于外表小而内表大的情况. 性能上的比较 比如Select * from T1 where x in ( select y from T2 ) 执行的过程 ...

  7. 高性能网络编程7--tcp连接的内存使用

    滑动窗口的工作方式 窗口通知: 发送端维护发送窗口大小(不在包中传输),接收端在ACK中告知接收窗口大小: 发送窗口初始是发送缓冲区大小,接收窗口初始是接收缓冲区大小:缓冲区决定窗口的最大值: 发送窗 ...

  8. 弱网测试之基于TP-LINK

    使用路由器做弱网测试应该是最真实的,网络工程师/运维工程师体会应该最深刻.这种方式测试成本也不高,比较推荐. 设置的方式不在赘述,参见使用手册,高级设置即可. 结束语: 这样测试的时候,测试机器连接该 ...

  9. MySQL之——崩溃-修复损坏的innodb:innodb_force_recovery

    转: https://blog.csdn.net/l1028386804/article/details/77199194 一.问题描述 今天在线运行的一个mysql崩溃了. 查看错误日志,如下: - ...

  10. 【分类器】感知机+线性回归+逻辑斯蒂回归+softmax回归

    一.感知机     详细参考:https://blog.csdn.net/wodeai1235/article/details/54755735 1.模型和图像: 2.数学定义推导和优化: 3.流程 ...