我不是传送门

题意 : 中文题目不解释

求gcd(x,y) = k (a<=x<=b, c<=y<=d);

根据gcd(ka,kb) = k*gcd(a,b), 可将问题转化为求gcd(a/k, b/k) = 1;

再由容斥定理可得到gcd(x,y) = gcd(b,d)- gcd(a,d)- gcd(c,b)+ gcd(a,c);

再套上莫比乌斯反演的模板, 嗯, 然后就能得到一次TE;

正解 : 容斥+莫比乌斯反演+分块优化;

分块优化 : 考虑到[n/i]、[m/i]都会有大量的完全相等的部分,我们可以把[n/i]、[m/i]都相等的部分放在一起算,也就是一个分块的思想。预处理出μ(d)的前缀和即可。

参考链接

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm> using namespace std;
#define ll long long
const int maxn = ; ll pri[maxn], mu[maxn];
ll vis[maxn]; void init()
{
memset(vis, , sizeof(vis));
memset(mu, , sizeof(mu));
mu[] = ;
int cnt = ;
for(ll i =; i <= ; i++)
{
if(vis[i] == ) {mu[i] = -; pri[cnt++] = i;}
for(ll j =; j < cnt&&i*pri[j] <= ; j++)
{
ll k = i*pri[j];
vis[k] = ;
if(i%pri[j] == ) {mu[k] = ; break; }
else mu[k] = -mu[i];
}
}
for(ll i = ; i <= ; i++) // 前缀和处理mu;
mu[i] += mu[i-];
} ll cal(ll l, ll r) // 分块优化
{
if(l > r) swap(l, r);
ll ans = ;
ll hay = ;
for(ll i = ; i <=l; i = hay+)
{
hay = min(l/(l/i), r/(r/i) );
ans += (mu[hay] - mu[i-])*(l/i)*(r/i);
}
return ans;
} int main()
{
ios::sync_with_stdio(false);
init();
ll n;
cin >> n;
while(n--)
{
ll a, b, c, d, k;
cin >> a >> b >> c >> d >> k;
ll ans = ;
ans = cal(b/k, d/k)+ cal((a-)/k,(c-)/k) - cal((a-)/k, d/k)- cal((c-)/k, b/k);
printf("%lld\n", ans); }
return ;
}

Problem(莫比乌斯反演)的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  3. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...

  4. 【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)

    [BZOJ2301][HAOI2011]Problem B(莫比乌斯反演) 题面 Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y ...

  5. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  6. BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 6519  Solved: 3026[Submit] ...

  7. BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 436  Solved: 187[Submit][S ...

  8. Problem b 莫比乌斯反演+枚举除法的取值

    莫比乌斯反演+枚举除法的取值 第二种形式: f(n)表示gcd(x,y)=n的数量. F(n)表示gcd(x,y)是n的倍数的数量. /** 题目:Problem b 链接:https://vjudg ...

  9. bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...

随机推荐

  1. Chromimu与JS交互的测试

    CHROMIMU与JS交互的测试 好东西 谷歌浏览器 学习 研究  http://blog.csdn.net/grassdragon/article/details/51659798 Chromimu ...

  2. LeetCode 258 Add Digits 解题报告

    题目要求 Given a non-negative integer num, repeatedly add all its digits until the result has only one d ...

  3. LeetCode 283 Move Zeroes 解题报告

    题目要求 Given an array nums, write a function to move all 0's to the end of it while maintaining the re ...

  4. jetty在eclipse和Idea中的使用

    eclipse中的配置 下载 http://www.eclipse.org/jetty/download.html 下载保存到特定的位置,解压. 整合到eclipse中 这里通过在eclipse中安装 ...

  5. 20165336 2017-2018-2《Java程序设计》课程总结

    每周作业链接汇总 我期望的师生关系:对师生关系的看法 学习基础和C语言基础调查:关于学JAVA与C的调查 Linux安装及学习:Linux的安装 第一周学习总结:认识学习JAVA 第二周学习总结:JA ...

  6. 【Python爬虫】BeautifulSoup网页解析库

    BeautifulSoup 网页解析库 阅读目录 初识Beautiful Soup Beautiful Soup库的4种解析器 Beautiful Soup类的基本元素 基本使用 标签选择器 节点操作 ...

  7. kali蓝牙连接

    http://blog.csdn.net/hailangnet/article/details/47723181 http://www.aiuxian.com/article/p-3012084.ht ...

  8. 并查集——易爆物D305

    部分内容摘自博客http://blog.csdn.net/u012881011/article/details/46883863,感谢 易爆物D305             运行时间限制:1000m ...

  9. C++ 方阵原地旋转90度

    不额外申请内存(另外的一个二维数组空间),将一个方阵(二维数组)原地旋转90度,主要的思路是,由外向内,一圈圈的进行旋转(就是依次进行交换),如下图所示,当这些圈圈都交换完了之后,就完成了原地旋转了. ...

  10. python练习题-day2

    1.判断下列逻辑语句的True,False 1)1 > 1 or 3 < 4 or 4 > 5 and 2 > 1 and 9 > 8 or 7 < 6 True ...