泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition
Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition
Peng Yin, Lingyun Xu, Zhe Liu, Lu Li, Hadi Salman, Yuqing He
Abstract— Place recognition is one of the major challenges for the LiDAR-based effective localization and mapping task.Traditional methods are usually relying on geometry matching to achieve place recognition, where a global geometry map need to be restored. In this paper, we accomplish the place recognition task based on an end-to-end feature learning framework with the LiDAR inputs. This method consists of two core modules, a dynamic octree mapping module that generates local 2D maps with the consideration of the robot’s motion; and an unsupervised place feature learning module which is an improved adversarial feature learning network with additional assistance for the long-term place recognition requirement. More specially, in place feature learning, we present an additional Generative Adversarial Network with a designed Conditional Entropy Reduction module to stabilize the feature learning process in an unsupervised manner. We evaluate the proposed method on the Kitti dataset and North Campus Long-Term LiDAR dataset. Experimental results show that the proposed method outperforms state-of-the-art in place recognition tasks under long-term applications. What’s more,the feature size and inference efficiency in the proposed method are applicable in real-time performance on practical robotic platforms.
位置识别是基于LiDAR的有效定位和建图任务的主要挑战之一。传统方法通常依赖于几何匹配来实现位置识别,其中需要恢复全局几何图。在本文中,我们基于具有LiDAR输入的端到端特征学习框架完成了位置识别任务。该方法由两个核心模块组成,一个动态八叉树映射模块,在考虑机器人运动的情况下生成局部二维映射; 和一个无监督的地方特色学习模块,它是一个改进的对抗性特征学习网络,为长期地点识别要求提供额外帮助。更具体地说,就位置特征学习,我们提出了一个额外的生成对抗网络,其具有设计的条件熵减少模块,以无人监督的方式稳定特征学习过程。我们在Kitti数据集和North Campus长期LiDAR数据集上评估所提出的方法。实验结果表明,该方法在长期应用中优于现有技术的识别任务。 而且,所提出的方法中的特征尺寸和推理效率适用于实际机器人平台上的实时性能。
在本文中,我们提出了一种基于端到端的基于LiDAR的特征学习框架,用于长期地点识别任务,其中地点识别是通过低维特征匹配而不是几何匹配来实现的。所提出的方法结合了两个核心模块,一个动态八叉树映射模块,它考虑到机器人的运动产生鸟类的局部视图,以及一个地点特征推理模块,它捕获有限数据样本的唯一地图特征映射。更具体地说,就位置特征学习,我们以完全无监督的方式稳定特征学习过程。在Kitti和North Campus长期LiDAR数据集上进行的实验表明,所提出的框架在变体视点差异下优于现有的最先进技术方法。

图1 八叉树结构。 每个节点被分成具有相等子空间的八个子节点。

图2 动态八叉树建图结果的示例。 第一行显示原始点云数据; 第二行显示基于所提出的动态八叉树建图的累积占用图; 第三行显示投影的鸟瞰2D地图。

图3 双向生成对抗网络。

图4 稳定对抗特征学习的框架。

图5 不同方向角度下不同方法的精确回忆曲线。 从第一列到最后一列,航向取向差异分别为22.5°到337.5°。

图6 不同航向取向情况下地点识别结果的AUC指数。
泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition的更多相关文章
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
- 转:无监督特征学习——Unsupervised feature learning and deep learning
http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...
- [转] 无监督特征学习——Unsupervised feature learning and deep learning
from:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio ...
- UFLDL(Unsupervised Feature Learning and Deep Learning)
UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套 ...
- Unsupervised Feature Learning via Non-Parametric Instance Discrimination
目录 概 主要内容 Wu Z., Xiong Y., Yu S. & Lin D. Unsupervised Feature Learning via Non-Parametric Insta ...
- [论文阅读] A Discriminative Feature Learning Approach for Deep Face Recognition (Center Loss)
原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每 ...
- Center Loss - A Discriminative Feature Learning Approach for Deep Face Recognition
URL:http://ydwen.github.io/papers/WenECCV16.pdf这篇论文主要的贡献就是提出了Center Loss的损失函数,利用Softmax Loss和Center ...
- Unsupervised Feature Learning and Deep Learning(UFLDL) Exercise 总结
7.27 暑假开始后,稍有时间,“搞完”金融项目,便开始跑跑 Deep Learning的程序 Hinton 在Nature上文章的代码 跑了3天 也没跑完 后来Debug 把batch 从200改到 ...
- A Discriminative Feature Learning Approach for Deep Face Recognition
url: https://kpzhang93.github.io/papers/eccv2016.pdf year: ECCV2016 abstract 对于人脸识别任务来说, 网络学习到的特征具有判 ...
随机推荐
- [javase学习笔记]-6.2 类与对象的关系
这一节我们来看一下类与对象之间的关系. 我们学习java语言,目的就是用java语言对现实生活中的事物进行描写叙述.那么我们如何来描写叙述呢.这就引出了类,我们在实际实现时,是通过类的形式来体现的. ...
- ISO镜像安装Ubuntu 13.04 64位,启动菜单制作
1.将光盘镜像中的vmlinuz.efi.initrd.lz,和镜像本身(ubuntu....iso) 三个文件复制到U盘根目录下.如果下面的方法没成功启动,你可能要把U盘格式化为USB-HDD FA ...
- JS 判断一个数组是否包含某个值
如下判断: return arrValues.indexOf('Sam') > -1
- iOS的动态代理模式的实现
动态代理模式的应用很多,特别是在不能修改被代理类的前提下,要对执行某些方法时需要打log或者捕捉异常等处理时,是一个非常方便的方法.只需要少量修改客户端(场景类)代码和添加一个代理类就可以实现,这个符 ...
- c#中的 virtual override 和abstract 以及sealed
1.如果父类方法没有加virtual关键字,即不是一个虚方法,则在子类中只能隐藏基类方法,而不能覆盖. 2.如果父类方法加了virtual关键字,即它是一个虚方法,在子类中一样可以隐藏. 3.如果子类 ...
- 【Android】Android输入子系统
成鹏致远 | lcw.cnblogs.com | 2013-10-25 Linux输入子系统回顾 1:为什么要回顾linux输入子系统?这个问题后面自然就知道了 1.linux输入子系统设备是基于平台 ...
- 推荐几个Windows工具软件: ASuite - 便携的程序启动器
主页: http://asuite.sourceforge.net 下载: http://sourceforge.net/projects/asuite/ ASuite is a lightweigh ...
- MapReduce教程(二)MapReduce框架Partitioner分区<转>
1 Partitioner分区 1.1 Partitioner分区描述 在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,按照手机号码段划分的话,需要把同一手机号码段的数据放 ...
- maven一键部署tomcat war包
1.环境如下 eclipse.apache-maven-3.0.5.apache-tomcat-7.0.39 2.配置如下 apache-tomcat-7.0.39配置C:\Program Files ...
- Intelij U
1.https://link.jianshu.com/?t=http://idea.lanyus.com/,下载JetbrainsCrack-2.6.2.jar,放到bin目录 2.编辑bin目录下面 ...