problem1 link

倒着想。每次添加一个右括号再添加一个左括号,直到还原。那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号。

problem2 link

令$h(x)=\sum_{i=1}^{x}g(i)$,那么答案为$h(R)-h(L-1)$。对于$h(x)$:

(1)如果$x\leq K$,那么$h(x)=0$

(2)否则对于$[K+1,x]$之间的所有偶数来说,对答案的贡献为$even+h(\frac{x}{2})-h(\frac{K}{2})$,其中$even=\frac{x}{2}-\frac{K}{2}$,$h(\frac{K}{2})=0$。奇数对答案的贡献为$odd*2+h(\frac{x+K}{2})$,$odd=x-K-even$。其中$[\frac{x}{2}+1,\frac{x+K}{2}]$之间的数字并不多,可以暴力。

problem3 link

下面第二个链接有关于714-div2-hard的题目的线形解法。它的思路记录过往的supply剩余总和以及demand的总和(如果supply大于 demand就抵消)。同时如果demand大于0还要记录最早的demand需要的位置。这样当出现新的supply并且足够抵消过去的demand时就回退回去满足demand然后返回。直到最后。

这道题与上面的区别是坐标会有负数并且可以在任意地方停止。所以可以假设先到达最左侧的某个地方,然后就跟上面类似了。对于在任何地方停止,可以贪心地计算。具体实现细节看代码以及注释。

code for problem1

#include <string>

class ParenthesisRemoval {
public:
int countWays(const std::string &s) {
constexpr int kMod = 1000000007;
int n = static_cast<int>(s.size());
long long ans = 1;
for (int i = n - 1, t = 0; i >= 0; --i) {
if (s[i] == ')') {
++t;
} else {
ans = ans * t % kMod;
--t;
}
}
return ans;
}
};

code for problem2

class NAddOdd {
public:
long long solve(long long L, long long R, int K) {
return Dfs(R, K) - Dfs(L - 1, K);
} private:
long long g(long long x, int K) {
long long ans = 0;
while (x > K) {
++ans;
if (x % 2 == 1) {
x += K;
} else {
x >>= 1;
}
}
return ans;
}
long long Dfs(long long x, int k) {
if (x <= k) {
return 0;
} long long even = (x >> 1) - (k >> 1);
long long odd = x - k - even;
long long ans = even + (odd << 1) + (Dfs(x >> 1, k) << 1);
for (long long i = (x >> 1) + 1; i <= ((x + k) >> 1); ++i) {
ans += g(i, k);
}
return ans;
}
};

code for problem3

#include <algorithm>
#include <vector> class Salesman {
public:
int minMoves(std::vector<int> pos, std::vector<int> delta) {
int result = Compute(pos, delta);
std::reverse(pos.begin(), pos.end());
std::reverse(delta.begin(), delta.end());
for (auto &x : pos) {
x *= -1;
}
result = std::min(result, Compute(pos, delta));
return result;
} private:
int Compute(const std::vector<int> &pos, const std::vector<int> &delta) {
int n = static_cast<int>(pos.size());
int last_need = n - 1;
while (last_need >= 0 && delta[last_need] >= 0) {
--last_need;
}
if (last_need < 0) {
return 0;
}
std::vector<int> next_need(n + 1, n);
for (int i = n - 1; i >= 0; --i) {
if (delta[i] < 0) {
next_need[i] = i;
} else {
next_need[i] = next_need[i + 1];
}
}
int result = std::numeric_limits<int>::max();
for (int left = 0; left < n; ++left) {
int right = last_need;
int sum = 0;
for (int i = left; i <= right; ++i) {
sum += delta[i];
}
while (sum < 0 && right + 1 < n) {
sum += delta[++right];
}
if (sum < 0) {
break;
}
// The left is start and must visit right to get all supplys.
int length = std::abs(pos[left]) + pos[right] - pos[left];
int supply = 0;
int demand = 0;
int go_back_pos = 0;
for (int i = left; i <= right; ++i) {
if (delta[i] < 0) {
int curr_demand = -delta[i];
if (demand == 0 && supply >= curr_demand) {
supply -= curr_demand;
} else {
if (demand == 0) {
// If the pos[i] is negative, then just keep go_back_pos as
// origin and need goto right and back to pos[i]
go_back_pos = std::max(go_back_pos, pos[i]);
}
demand += curr_demand;
}
} else {
supply += delta[i];
if (demand > 0 && supply >= demand) {
supply -= demand;
demand = 0;
// Here you have a choose that return to previous demand pos
// immediately and back and in future you will no need to return
// back
length += 2 * std::max(0, pos[i] - go_back_pos);
}
}
int final_stop_pos =
demand > 0 ? go_back_pos : pos[std::min(right, next_need[i + 1])];
result =
std::min(result, length + std::max(0, pos[right] - final_stop_pos));
}
if (delta[left] < 0) {
break;
}
}
return result;
}
};

  

参考:

https://codeforces.com/blog/entry/50602

https://www.topcoder.com/blog/single-round-match-714-editorials/

topcoder srm 714 div1的更多相关文章

  1. Topcoder SRM 643 Div1 250<peter_pan>

    Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...

  2. Topcoder Srm 726 Div1 Hard

    Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...

  3. topcoder srm 738 div1 FindThePerfectTriangle(枚举)

    Problem Statement      You are given the ints perimeter and area. Your task is to find a triangle wi ...

  4. Topcoder SRM 602 div1题解

    打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...

  5. Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串

    Problem Statement      The Happy Letter game is played as follows: At the beginning, several players ...

  6. Topcoder SRM 584 DIV1 600

    思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...

  7. TopCoder SRM 605 DIV1

    604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...

  8. topcoder srm 575 div1

    problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...

  9. topcoder srm 640 div1

    problem1 link 首先使用两个端点颜色不同的边进行连通.答案是$n-1-m$.其中$m$是联通分量的个数. problem2 link 首先构造一个最小割的模型.左边的$n_{1}$个点与源 ...

随机推荐

  1. 2017/6Summary

    字符串转换为JSON 1.var json = eval('(' + str + ')'); 2.var json = (new Function("return " + str) ...

  2. Mysql由浅入深

      1. Mysql的安装方式 1. yum安装mysql 适合对数据库要求不太高的场合,例如:并发不大,公司内部,企业内部. 1. 官网下载yum源,wget https://dev.mysql.c ...

  3. mysqldump导出数据

    如果导出的数据是乱码,需要制定--default-character-set= mysqldump -h wn-fala-v2-cluster.cluster-cczg3tb617nn.eu-cent ...

  4. AngularJs ng-change事件/指令(转)

    from:http://blog.csdn.net/u011127019/article/details/52564111 定义和用法 ng-change 指令用于告诉 AngularJS 在 HTM ...

  5. 将Web项目War包部署到Tomcat服务器基本步骤

    参考来源: http://www.cnblogs.com/pannysp/archive/2012/03/07/2383364.html 1. 常识:   1.1 War包 War包一般是在进行Web ...

  6. python爬虫 ----文章爬虫(合理处理字符串中的\n\t\r........)

    import urllib.request import re import time num=input("输入日期(20150101000):") def openpage(u ...

  7. 【Hive学习之二】Hive SQL

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...

  8. EasyUI添加进度条

    EasyUI添加进度条 添加进度条重点只有一个,如何合理安排进度刷新与异步调用逻辑,假如我们在javascript代码中通过ajax或者第三方框架dwr等对远程服务进行异步调用,实现进度条就需要做到以 ...

  9. Lambda表达式select()和where()的区别

    可能很多同学和我一样对于select()和where()区别并不是太清晰,其实两者还是有本质区别的. 1.where()用法:必须加条件,且返回对象结果. static void Main(strin ...

  10. Caddy – 方便够用的 HTTPS server 新手教程

    最近发现了一个 golang 开发的 HTTP server,叫做 Caddy,它配置起来十分简便,甚至可以 28 秒配置好一个支持 http2 的 server ,而且对各种 http 新特性都支持 ...