topcoder srm 714 div1
problem1 link
倒着想。每次添加一个右括号再添加一个左括号,直到还原。那么每次的右括号的选择范围为当前左括号后面的右括号减去后面已经使用的右括号。
problem2 link
令$h(x)=\sum_{i=1}^{x}g(i)$,那么答案为$h(R)-h(L-1)$。对于$h(x)$:
(1)如果$x\leq K$,那么$h(x)=0$
(2)否则对于$[K+1,x]$之间的所有偶数来说,对答案的贡献为$even+h(\frac{x}{2})-h(\frac{K}{2})$,其中$even=\frac{x}{2}-\frac{K}{2}$,$h(\frac{K}{2})=0$。奇数对答案的贡献为$odd*2+h(\frac{x+K}{2})$,$odd=x-K-even$。其中$[\frac{x}{2}+1,\frac{x+K}{2}]$之间的数字并不多,可以暴力。
problem3 link
下面第二个链接有关于714-div2-hard的题目的线形解法。它的思路记录过往的supply剩余总和以及demand的总和(如果supply大于 demand就抵消)。同时如果demand大于0还要记录最早的demand需要的位置。这样当出现新的supply并且足够抵消过去的demand时就回退回去满足demand然后返回。直到最后。
这道题与上面的区别是坐标会有负数并且可以在任意地方停止。所以可以假设先到达最左侧的某个地方,然后就跟上面类似了。对于在任何地方停止,可以贪心地计算。具体实现细节看代码以及注释。
code for problem1
#include <string>
class ParenthesisRemoval {
public:
int countWays(const std::string &s) {
constexpr int kMod = 1000000007;
int n = static_cast<int>(s.size());
long long ans = 1;
for (int i = n - 1, t = 0; i >= 0; --i) {
if (s[i] == ')') {
++t;
} else {
ans = ans * t % kMod;
--t;
}
}
return ans;
}
};
code for problem2
class NAddOdd {
public:
long long solve(long long L, long long R, int K) {
return Dfs(R, K) - Dfs(L - 1, K);
}
private:
long long g(long long x, int K) {
long long ans = 0;
while (x > K) {
++ans;
if (x % 2 == 1) {
x += K;
} else {
x >>= 1;
}
}
return ans;
}
long long Dfs(long long x, int k) {
if (x <= k) {
return 0;
}
long long even = (x >> 1) - (k >> 1);
long long odd = x - k - even;
long long ans = even + (odd << 1) + (Dfs(x >> 1, k) << 1);
for (long long i = (x >> 1) + 1; i <= ((x + k) >> 1); ++i) {
ans += g(i, k);
}
return ans;
}
};
code for problem3
#include <algorithm>
#include <vector> class Salesman {
public:
int minMoves(std::vector<int> pos, std::vector<int> delta) {
int result = Compute(pos, delta);
std::reverse(pos.begin(), pos.end());
std::reverse(delta.begin(), delta.end());
for (auto &x : pos) {
x *= -1;
}
result = std::min(result, Compute(pos, delta));
return result;
} private:
int Compute(const std::vector<int> &pos, const std::vector<int> &delta) {
int n = static_cast<int>(pos.size());
int last_need = n - 1;
while (last_need >= 0 && delta[last_need] >= 0) {
--last_need;
}
if (last_need < 0) {
return 0;
}
std::vector<int> next_need(n + 1, n);
for (int i = n - 1; i >= 0; --i) {
if (delta[i] < 0) {
next_need[i] = i;
} else {
next_need[i] = next_need[i + 1];
}
}
int result = std::numeric_limits<int>::max();
for (int left = 0; left < n; ++left) {
int right = last_need;
int sum = 0;
for (int i = left; i <= right; ++i) {
sum += delta[i];
}
while (sum < 0 && right + 1 < n) {
sum += delta[++right];
}
if (sum < 0) {
break;
}
// The left is start and must visit right to get all supplys.
int length = std::abs(pos[left]) + pos[right] - pos[left];
int supply = 0;
int demand = 0;
int go_back_pos = 0;
for (int i = left; i <= right; ++i) {
if (delta[i] < 0) {
int curr_demand = -delta[i];
if (demand == 0 && supply >= curr_demand) {
supply -= curr_demand;
} else {
if (demand == 0) {
// If the pos[i] is negative, then just keep go_back_pos as
// origin and need goto right and back to pos[i]
go_back_pos = std::max(go_back_pos, pos[i]);
}
demand += curr_demand;
}
} else {
supply += delta[i];
if (demand > 0 && supply >= demand) {
supply -= demand;
demand = 0;
// Here you have a choose that return to previous demand pos
// immediately and back and in future you will no need to return
// back
length += 2 * std::max(0, pos[i] - go_back_pos);
}
}
int final_stop_pos =
demand > 0 ? go_back_pos : pos[std::min(right, next_need[i + 1])];
result =
std::min(result, length + std::max(0, pos[right] - final_stop_pos));
}
if (delta[left] < 0) {
break;
}
}
return result;
}
};
参考:
https://codeforces.com/blog/entry/50602
https://www.topcoder.com/blog/single-round-match-714-editorials/
topcoder srm 714 div1的更多相关文章
- Topcoder SRM 643 Div1 250<peter_pan>
Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...
- Topcoder Srm 726 Div1 Hard
Topcoder Srm 726 Div1 Hard 解题思路: 问题可以看做一个二分图,左边一个点向右边一段区间连边,匹配了左边一个点就能获得对应的权值,最大化所得到的权值的和. 然后可以证明一个结 ...
- topcoder srm 738 div1 FindThePerfectTriangle(枚举)
Problem Statement You are given the ints perimeter and area. Your task is to find a triangle wi ...
- Topcoder SRM 602 div1题解
打卡- Easy(250pts): 题目大意:rating2200及以上和2200以下的颜色是不一样的(我就是属于那个颜色比较菜的),有个人初始rating为X,然后每一场比赛他的rating如果增加 ...
- Topcoder SRM 627 div1 HappyLettersDiv1 : 字符串
Problem Statement The Happy Letter game is played as follows: At the beginning, several players ...
- Topcoder SRM 584 DIV1 600
思路太繁琐了 ,实在不想解释了 代码: #include<iostream> #include<cstdio> #include<string> #include& ...
- TopCoder SRM 605 DIV1
604的题解还没有写出来呢.先上605的. 代码去practice房间找. 说思路. A: 贪心,对于每个类型的正值求和,如果没有正值就取最大值,按着求出的值排序,枚举选多少个类型. B: 很明显是d ...
- topcoder srm 575 div1
problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其 ...
- topcoder srm 640 div1
problem1 link 首先使用两个端点颜色不同的边进行连通.答案是$n-1-m$.其中$m$是联通分量的个数. problem2 link 首先构造一个最小割的模型.左边的$n_{1}$个点与源 ...
随机推荐
- TP5数据库操作方法
一.TP5数据库操作方法 1.name()方法作用 : 指定默认的数据表名(不含前缀)示例 : Db::name(‘weiba_post’);返回 : Db对象 2.setTable()方法作用 : ...
- 纯HTML和CSS实现点击切换
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- LeetCode69.x的平方根
实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去. 示例 1: 输入: 4 输出: 2 示例 ...
- C# 对数据库操作的帮助类SQLHelper.cs
using System; using System.Collections.Generic; using System.Configuration; using System.Data; using ...
- .NET 黑魔法 - 自定义日志扩展
我们开发程序时避免不了要有日志系统,我们希望有一个通用的.不夹杂任何方言的调用方式,简单地说就是保留微软日志框架的注入方式和使用方式. 比如我们希望这样调用: 我们不希望有个 IAbcLogger, ...
- 标准I/O流
一.标准输入流 标准输入流对象cin,重点掌握的函数 cin.get() //一次只能读取一个字符 cin.get(一个参数) //读一个字符 cin.get(三个参数) //可以读字符串 cin.g ...
- quick player no exit
QuickXDev插件自动升级后player no exist 昨晚上QuickXDev插件运行还ok,今天打开电脑启动sublime text2后,右键run with player提示player ...
- web基础,用html元素制作web页面
用div,form制作登录页面,尽可能做得漂亮. 练习使用下拉列表选择框,无序列表,有序列表,定义列表. 观察常用网页的HTML元素,在实际的应用场景中,用已学的标签模仿制作. <!DOCTYP ...
- Python 连接SQL Server数据库 - pymssql使用基础
1. 官方api http://www.pymssql.org/en/stable/ref/pymssql.html 我学习自这里
- python内置函数zip
zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表. 如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以 ...