The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

Today I tried a new project named: Face-Aging-CAAE

Paper Name: Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

Github: https://github.com/ZZUTK/Face-Aging-CAAE

But count some issues before I run the code successfully. Maybe it caused by the version of tensorflow.

1. TypeError: Expected int32, got list containing Tensors of type '_Message' instead.

2. ValueError: Only call 'sigmoid_cross_entropy_with_logits' with named arguments (labels=..., logits=..., ...)

3. ValueError: Variable E_conv0/w/Adam/ does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope ?


The follow changes are needed for this code to solve above issues. 


  Then, you will see the process of training:

  

  

The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)的更多相关文章

  1. Learning Face Age Progression: A Pyramid Architecture of GANs-1-实现人脸老化

    Learning Face Age Progression: A Pyramid Architecture of GANs Abstract 人脸年龄发展有着两个重要的需求,即老化准确性和身份持久性, ...

  2. image-to-image translation with conditional adversarial networks文献笔记

    Image-to-Image Translation with Conditional Adversarial Networks (基于条件gan的图像转图像) 作者:Phillip Isola, J ...

  3. Learning Face Age Progression: A Pyramid Architecture of GANs

    前言 作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向.基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式.end2end.以及MaskC ...

  4. Latent Representation Learning For Artificial Bandwidth Extension Using A Conditional Variational Auto-Encoder

    博客作者:凌逆战 论文地址:https://ieeexplore.ieee.xilesou.top/abstract/document/8683611/ 地址:https://www.cnblogs. ...

  5. (Pixel2PixelGANs)Image-to-Image translation with conditional adversarial networks

    Introduction 1. develop a common framework for all problems that are the task of predicting pixels f ...

  6. 《Image-to-Image Translation with Conditional Adversarial Networks》论文笔记

    出处 CVPR2017 Motivation 尝试用条件GAN网络来做image translation,让网络自己学习图片到图片的映射函数,而不需要人工定制特征. Introduction 作者从不 ...

  7. Generative Adversarial Nets[content]

    0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...

  8. Generative Adversarial Nets[CAAE]

    本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...

  9. [转]GAN论文集

    really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...

随机推荐

  1. Introduction to debugging neural networks

    http://russellsstewart.com/notes/0.html The following advice is targeted at beginners to neural netw ...

  2. Windsor

    https://github.com/castleproject/Windsor https://github.com/castleproject/Windsor/blob/master/docs/R ...

  3. 【Hadoop学习之八】MapReduce开发

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 伪分布式:HDFS和YARN 伪分 ...

  4. 使用Python中的config配置

    Python中有ConfigParser类,可以很方便的从配置文件中读取数据(如DB的配置,路径的配置),所以可以自己写一个函数,实现读取config配置. config文件的写法比较简单,[sect ...

  5. sql之left join、right join、inner join的区别,连接自己时的查询结果测试

    sql之left join.right join.inner join的区别 left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括 ...

  6. 吴恩达讲了干货满满的一节全新AI课,全程手写板书充满诚意非常干货

    吴恩达讲了干货满满的一节全新AI课,全程手写板书充满诚意非常干货 摘要: 目前,AI技术做出的经济贡献几乎都来自监督学习,也就是学习从A到B,从输入到输出的映射.现在,监督学习.迁移学习.非监督学习. ...

  7. centos-ftp搭建

    参照https://blog.csdn.net/a735834365/article/details/80622105 https://blog.csdn.net/a735834365/article ...

  8. UVALive 3295 Counting Triangles

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  9. 不懂RPC实现原理怎能实现架构梦

    RPC(Remote Procedure Call Protocol)——远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.RPC协议假定某些传输协议的存在 ...

  10. 余额表前后台操作和对应sql

    发生额的含义:产生于账行表. gl_je_lines账行表——>借贷(会产生额度,即发生额) —————————————————————————— gl_balances余额表: 余额   =  ...