The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

Today I tried a new project named: Face-Aging-CAAE

Paper Name: Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

Github: https://github.com/ZZUTK/Face-Aging-CAAE

But count some issues before I run the code successfully. Maybe it caused by the version of tensorflow.

1. TypeError: Expected int32, got list containing Tensors of type '_Message' instead.

2. ValueError: Only call 'sigmoid_cross_entropy_with_logits' with named arguments (labels=..., logits=..., ...)

3. ValueError: Variable E_conv0/w/Adam/ does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope ?


The follow changes are needed for this code to solve above issues. 


  Then, you will see the process of training:

  

  

The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)的更多相关文章

  1. Learning Face Age Progression: A Pyramid Architecture of GANs-1-实现人脸老化

    Learning Face Age Progression: A Pyramid Architecture of GANs Abstract 人脸年龄发展有着两个重要的需求,即老化准确性和身份持久性, ...

  2. image-to-image translation with conditional adversarial networks文献笔记

    Image-to-Image Translation with Conditional Adversarial Networks (基于条件gan的图像转图像) 作者:Phillip Isola, J ...

  3. Learning Face Age Progression: A Pyramid Architecture of GANs

    前言 作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向.基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式.end2end.以及MaskC ...

  4. Latent Representation Learning For Artificial Bandwidth Extension Using A Conditional Variational Auto-Encoder

    博客作者:凌逆战 论文地址:https://ieeexplore.ieee.xilesou.top/abstract/document/8683611/ 地址:https://www.cnblogs. ...

  5. (Pixel2PixelGANs)Image-to-Image translation with conditional adversarial networks

    Introduction 1. develop a common framework for all problems that are the task of predicting pixels f ...

  6. 《Image-to-Image Translation with Conditional Adversarial Networks》论文笔记

    出处 CVPR2017 Motivation 尝试用条件GAN网络来做image translation,让网络自己学习图片到图片的映射函数,而不需要人工定制特征. Introduction 作者从不 ...

  7. Generative Adversarial Nets[content]

    0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...

  8. Generative Adversarial Nets[CAAE]

    本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...

  9. [转]GAN论文集

    really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...

随机推荐

  1. cmd下 mysql操作命令大全详解

    启动:net start mySql; 进入:mysql -u root -p/mysql -h localhost -u root -p databaseName; 列出数据库:show datab ...

  2. NSOperation、NSOperationQueue(III)

    NSOperation.NSOperationQueue 常用属性和方法归纳 NSOperation 常用属性和方法 a. 取消操作方法 //可取消操作,实质是标记 isCancelled 状态. - ...

  3. MVC 中的Model对象

    最近实在是太忙,客户丢了一个框架,没有任何说明文档,更没有所谓的技术支持,一直忙于学习,最后好歹还有点头绪,话不多说,MVC的学习是不能拉下的,就当前小白的我,认为MVC中的M并不是想象中的那样简单, ...

  4. xmldecoder漏洞

    https://blog.csdn.net/youanyyou/article/details/78990312

  5. eos中BM与有BM特色的去中心化。区块链世界,白皮书为共识,代码为法律。

    比特币挖矿是谁算力高,谁更容易挖到新的比特币,而BM认为这太浪费资源了,于是设计了DPoS:在DPoS系统里,大家不再挖矿.而是指定几个人负责记账,不叫矿工,而叫见证人.比特股里开始是101人,EOS ...

  6. centos-ftp搭建

    参照https://blog.csdn.net/a735834365/article/details/80622105 https://blog.csdn.net/a735834365/article ...

  7. CRM 权限设置

    表结构的设计 权限表 url -url地址的正则表达式 ^$ title - 标题 角色表 name - 角色名称 permissions 多对多关联权限表 (权限和角色的关系表) 用户表 name ...

  8. 75.Java异常处理机制-手动抛出异常

    package testDate; import java.io.File; import java.io.FileNotFoundException; public class TestReadFi ...

  9. 爬虫--cheerio

    const cheerio = require('cheerio') const $ = cheerio.load('<h2 class="title">Hello w ...

  10. IE haslayout的属性及其值

    haslayout是IE 渲染引擎的一个内部组成部分.在IE 中,一个元素要么自己对自身的内容进行计算大小和组织,要么依赖于父元素来计算尺寸和组织内容.为了调节这两个不同的概念,渲染引擎采用了hasl ...