The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

Today I tried a new project named: Face-Aging-CAAE

Paper Name: Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)

Github: https://github.com/ZZUTK/Face-Aging-CAAE

But count some issues before I run the code successfully. Maybe it caused by the version of tensorflow.

1. TypeError: Expected int32, got list containing Tensors of type '_Message' instead.

2. ValueError: Only call 'sigmoid_cross_entropy_with_logits' with named arguments (labels=..., logits=..., ...)

3. ValueError: Variable E_conv0/w/Adam/ does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope ?


The follow changes are needed for this code to solve above issues. 


  Then, you will see the process of training:

  

  

The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)的更多相关文章

  1. Learning Face Age Progression: A Pyramid Architecture of GANs-1-实现人脸老化

    Learning Face Age Progression: A Pyramid Architecture of GANs Abstract 人脸年龄发展有着两个重要的需求,即老化准确性和身份持久性, ...

  2. image-to-image translation with conditional adversarial networks文献笔记

    Image-to-Image Translation with Conditional Adversarial Networks (基于条件gan的图像转图像) 作者:Phillip Isola, J ...

  3. Learning Face Age Progression: A Pyramid Architecture of GANs

    前言 作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向.基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式.end2end.以及MaskC ...

  4. Latent Representation Learning For Artificial Bandwidth Extension Using A Conditional Variational Auto-Encoder

    博客作者:凌逆战 论文地址:https://ieeexplore.ieee.xilesou.top/abstract/document/8683611/ 地址:https://www.cnblogs. ...

  5. (Pixel2PixelGANs)Image-to-Image translation with conditional adversarial networks

    Introduction 1. develop a common framework for all problems that are the task of predicting pixels f ...

  6. 《Image-to-Image Translation with Conditional Adversarial Networks》论文笔记

    出处 CVPR2017 Motivation 尝试用条件GAN网络来做image translation,让网络自己学习图片到图片的映射函数,而不需要人工定制特征. Introduction 作者从不 ...

  7. Generative Adversarial Nets[content]

    0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...

  8. Generative Adversarial Nets[CAAE]

    本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...

  9. [转]GAN论文集

    really-awesome-gan A list of papers and other resources on General Adversarial (Neural) Networks. Th ...

随机推荐

  1. Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)

    http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...

  2. CNN那么多的网络有什么区别吗?如何对CNN网络进行修改?

    https://www.zhihu.com/question/53727257/answer/136261195 http://blog.csdn.net/csmqq/article/details/ ...

  3. Linux 进程间通讯

    一.Linux 下进程间通讯方式 1)管道(Pipe)及有名管道(named pipe): 管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允 ...

  4. SQL提交数据三种类型

    在数据库的插入.删除和修改操作时,只有当事务在提交到数据库时才算完成. SQL语句提交数据有三种类型:显式提交.隐式提交及自动提交. [1]显式提交 显式提交.即用COMMIT命令直接完成的提交方式. ...

  5. Selenium自动化测试,接口自动化测试开发,性能测试从入门到精通

    Selenium自动化测试,接口自动化测试开发,性能测试从入门到精通Selenium接口性能自动化测试基础部分:分层自动化思想Slenium介绍Selenium1.0/2.0/3.0Slenium R ...

  6. centos6.8安装DB2 10.5

    1.把tar拷贝到/opt下面,用root账户,安装软件包 cd /opt tar -zxvf v9.5fp3b_linuxx64_server.tar.gz (64位) cd server ./db ...

  7. java连接oracle数据库使用SERVICE NAME、SID以及TNSName不同写法

    格式一: 使用ServiceName方式: jdbc:oracle:thin:@//<host>:<port>/<service_name> 例 jdbc:orac ...

  8. CRM rbac 组件的应用

    1 拷贝 rbac 组件到项目中,注册这个app 2 数据库迁移 1 删除rbac下migrations里除了init外的文件 2 修改用户表 class User(models.Model): &q ...

  9. [转载]C#中Invoke的用法()

    invoke和begininvoke 区别 一直对invoke和begininvoke的使用和概念比较混乱,这两天看了些资料,对这两个的用法和原理有了些新的认识和理解. 首先说下,invoke和beg ...

  10. java使用ssh远程操作linux 提交spark jar

    maven依赖 <!--Java ssh-2 --><dependency> <groupId>ch.ethz.ganymed</groupId> &l ...