P4238 【模板】多项式求逆
思路
多项式求逆就是对于一个多项式\(A(x)\),求一个多项式\(B(x)\),使得\(A(x)B(x) \equiv 1 \ (mod x^n)\)
假设现在多项式只有一项,显然\(B(x)\)的第0项(常数项)就是\(A(x)\)的第0项(常数项)的逆元(所以\(A(x)\)有没有逆元取决于\(A(x)\)的常数项有没有逆元)
那我们可以利用递归的方法,
现在要求
\]
假设有多项式\(B'(x)\),满足
\]
则要求的\(B(x)\),必定也满足
\]
所以有
(B(x)-B'(x))^2\equiv 0 (mod\ x^{n})\\
B^2(x)-2B(x)B'(x)+B'^2(x)\equiv 0 (mod\ x^{n})\\
\]
两侧都乘\(A(x)\)
\]
所以
\]
递归求解即可
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
const int MOD = 998244353,G = 3, invG = 332748118;
int pow(int a,int b){
int ans=1;
while(b){
if(b&1)
ans=(a*ans)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ans;
}
void NTT(int *a,int n,int opt){
int lim=0;
while((1<<lim)<n)
lim++;
n=(1<<lim);
for(int i=0;i<n;i++){
int t=0;
for(int j=0;j<lim;j++)
if((i>>j)&1)
t|=(1<<(lim-j-1));
if(t<i)
swap(a[t],a[i]);
}
for(int i=2;i<=n;i<<=1){
int len=i/2;
int tmp=pow((opt)?G:invG,(MOD-1)/i);
for(int j=0;j<n;j+=i){
int mid=1;
for(int k=j;k<j+len;k++){
int t=a[k+len]*mid;
a[k+len]=(a[k]-t+MOD)%MOD;
a[k]=(a[k]+t)%MOD;
mid=(mid*tmp)%MOD;
}
}
}
if(!opt){
int invn=pow(n,MOD-2);
for(int i=0;i<n;i++)
a[i]=(a[i]*invn)%MOD;
}
}
int c[300100],a[300100],b[300100],n;
void get_inv(int times,int *a,int *b){
if(times==1){
b[0]=pow(a[0],MOD-2);
return;
}
get_inv((times+1)>>1,a,b);
while((times<<1)>n)
n<<=1;
for(int i=0;i<times;i++){
c[i]=a[i];
}
for(int i=times;i<n;i++){
c[i]=0;
}
NTT(c,n,1);
NTT(b,n,1);
for(int i=0;i<n;i++){
b[i]=((2-c[i]*b[i]%MOD)%MOD+MOD)%MOD*b[i]%MOD;
}
NTT(b,n,0);
for(int i=times;i<n;i++){
b[i]=0;
}
}
signed main(){
scanf("%lld",&n);
int tx=n;
for(int i=0;i<tx;i++)
scanf("%lld",&a[i]);
n=1;
get_inv(tx,a,b);
for(int i=0;i<tx;i++){
printf("%lld ",(b[i]+MOD)%MOD);
}
return 0;
}
P4238 【模板】多项式求逆的更多相关文章
- 洛谷 P4238 [模板] 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html ...
- 多项式求逆元详解+模板 【洛谷P4238】多项式求逆
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出 ...
- 洛谷.4238.[模板]多项式求逆(NTT)
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...
- [模板][P4238]多项式求逆
NTT多项式求逆模板,详见代码 #include <map> #include <set> #include <stack> #include <cmath& ...
- 2018.12.30 洛谷P4238 【模板】多项式求逆
传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...
- 洛谷P4238【模板】多项式求逆
洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A ...
- [洛谷P4238]【模板】多项式求逆
题目大意:多项式求逆 题解:$ A^{-1}(x) = (2 - B(x) * A(x)) \times B(x) \pmod{x^n} $ ($B(x)$ 为$A(x)$在$x^{\lceil \d ...
- luogu P4725 多项式对数函数 (模板题、FFT、多项式求逆、求导和积分)
手动博客搬家: 本文发表于20181125 13:25:03, 原地址https://blog.csdn.net/suncongbo/article/details/84487306 题目链接: ht ...
- LG4238 【【模板】多项式求逆】
前言 学习了Great_Influence的递推实现,我给大家说一下多项式求逆严格的边界条件,因为我发现改动一些很小的边界条件都会使程序出错.怎么办,背代码吗?背代码是不可能,这辈子都不会背代码的.理 ...
随机推荐
- 认识ZTree
ZTree基本知识 zTree 是一个依靠 jQuery 实现的多功能 “树插件”.优异的性能.灵活的配置.多种功能的组合是 zTree 最大优点. 一.最简单的树(标准的json数据): 1.set ...
- Yii Restful api认证
- xpath ,css
https://docs.scrapy.org/en/latest/intro/tutorial.html xpath @选择属性 .当前目录下选择 //任意路径选择 /bookstore/book ...
- 一 django框架?
Django-1 一 什么是web框架? 框架,即framework,特指为解决一个开放性问题而设计的具有一定约束性的支撑结构,使用框架可以帮你快速开发特定的系统,简单地说,就是你用别人搭建好的舞 ...
- codeforces 984B Minesweeper
题意: 给出一个矩阵,如果一个格子是数字,那么与这个格子相邻的格子中有炸弹的数量必须等于这个格子中的数字: 如果一个格子是空地,那么这个格子的所有相邻的格子中就不能有炸弹. 判断这个矩阵是否合法. 思 ...
- Spark学习之路 (二十七)图简介
一.图 1.1 基本概念 图是由顶点集合(vertex)及顶点间的关系集合(边edge)组成的一种数据结构. 这里的图并非指代数中的图.图可以对事物以及事物之间的关系建模,图可以用来表示自然发生的连接 ...
- QWidget 的 close 与 Qt::WA_DeleteOnClose
[1]close 与 Qt::WA_DeleteOnClose简介 1.1 Qt源码 /*! Closes this widget. Returns \c true if the widget was ...
- 集合运算—union(并集)、intersect(交集)和except(差集)
一.集合运算的基本格式是: 集合查询1 <集合运算> 集合查询2 [order by ...] 二.集合运算符是对两个集合操作的,两个集合必须具有相同的列数,列具有相同的数据类型(至少能隐 ...
- centos安装angr
1.angr环境 yum install -y python-dev libffi-dev build-essential virtualenvwrapper mkvirtualenv angr 问题 ...
- HDU 1207 汉诺塔II (递推)
经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘.上 ...