Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning

2018-08-03 19:16:56

本文转自:https://github.com/floodsung/Meta-Learning-Papers

1 Legacy Papers

[1] Nicolas Schweighofer and Kenji Doya. Meta-learning in reinforcement learning. Neural Networks, 16(1):5–9, 2003.

[2] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent. In International Conference on Artificial Neural Networks, pages 87–94. Springer, 2001.

[3] Kunikazu Kobayashi, Hiroyuki Mizoue, Takashi Kuremoto, and Masanao Obayashi. A meta-learning method based on temporal difference error. In International Conference on Neural Information Processing, pages 530–537. Springer, 2009.

[4] Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to learn, pages 3–17. Springer, 1998.

[5] A Steven Younger, Sepp Hochreiter, and Peter R Conwell. Meta-learning with backpropagation. In Neural Networks, 2001. Proceedings. IJCNN’01. International Joint Conference on, volume 3. IEEE, 2001.

[6] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial Intelligence Review, 18(2):77–95, 2002.

[7] Hugo Larochelle, Dumitru Erhan, and Yoshua Bengio. Zero-data learning of new tasks. In AAAI, volume 1, pp. 3, 2008.

[8] Brenden M Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua B Tenenbaum.One shot learning of simple visual concepts. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society, volume 172, pp. 2, 2011.

[9] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE transactions on pattern analysis and machine intelligence, 28(4):594–611, 2006.

[10] Ju ̈rgen Schmidhuber. A neural network that embeds its own meta-levels. In Neural Networks, 1993., IEEE International Conference on, pp. 407–412. IEEE, 1993.

[11] Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pp. 181–209. Springer, 1998.

[12] Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Universite ́ de Montre ́al, De ́partement d’informatique et de recherche ope ́rationnelle, 1990.

[13] Samy Bengio, Yoshua Bengio, and Jocelyn Cloutier. On the search for new learning rules for ANNs. Neural Processing Letters, 2(4):26–30, 1995.

[14] Rich Caruana. Learning many related tasks at the same time with backpropagation. Advances in neural information processing systems, pp. 657–664, 1995.

[15] Giraud-Carrier, Christophe, Vilalta, Ricardo, and Brazdil, Pavel. Introduction to the special issue on meta-learning. Machine learning, 54(3):187–193, 2004.

[16] Jankowski, Norbert, Duch, Włodzisław, and Grabczewski, Krzysztof. Meta-learning in computational intelligence, volume 358. Springer Science & Business Media, 2011.

[17] N. E. Cotter and P. R. Conwell. Fixed-weight networks can learn. In International Joint Conference on Neural Networks, pages 553–559, 1990.

[18] J. Schmidhuber. Evolutionary principles in self-referential learning; On learning how to learn: The meta-meta-... hook. PhD thesis, Institut f. Informatik, Tech. Univ. Munich, 1987.

[19] J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent networks. Neural Computation, 4(1):131–139, 1992.

[20] Jurgen Schmidhuber, Jieyu Zhao, and Marco Wiering. Simple principles of metalearning. Technical report, SEE, 1996.

[21] Thrun, Sebastian and Pratt, Lorien. Learning to learn. Springer Science & Business Media, 1998.

2 Recent Papers

[1] Andrychowicz, Marcin, Denil, Misha, Gomez, Sergio, Hoffman, Matthew W, Pfau, David, Schaul, Tom, and de Freitas, Nando. Learning to learn by gradient descent by gradient descent. In Advances in Neural Information Processing Systems, pp. 3981–3989, 2016

[2] Ba, Jimmy, Hinton, Geoffrey E, Mnih, Volodymyr, Leibo, Joel Z, and Ionescu, Catalin. Using fast weights to attend to the recent past. In Advances In Neural Information Processing Systems, pp. 4331–4339, 2016

[3] David Ha, Andrew Dai and Le, Quoc V. Hypernetworks. In ICLR 2017, 2017.

[4] Koch, Gregory. Siamese neural networks for one-shot image recognition. PhD thesis, University of Toronto, 2015.

[5] Lake, Brenden M, Salakhutdinov, Ruslan R, and Tenenbaum, Josh. One-shot learning by inverting a compositional causal process. In Advances in neural information processing systems, pp. 2526–2534, 2013.

[6] Santoro, Adam, Bartunov, Sergey, Botvinick, Matthew, Wierstra, Daan, and Lillicrap, Timothy. Meta-learning with memory-augmented neural networks. In Proceedings of The 33rd International Conference on Machine Learning, pp. 1842–1850, 2016.

[7] Vinyals, Oriol, Blundell, Charles, Lillicrap, Tim, Wierstra, Daan, et al. Matching networks for one shot learning. In Advances in Neural Information Processing Systems, pp. 3630–3638, 2016.

[8] Kaiser, Lukasz, Nachum, Ofir, Roy, Aurko, and Bengio, Samy. Learning to remember rare events. In ICLR 2017, 2017.

[9] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and R. Hadsell. Learning to navigate in complex environments. Techni- cal report, DeepMind, 2016.

[10] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. Technical report, submitted to ICLR 2017, 2016.

[11] Y. Duan, J. Schulman, X. Chen, P. Bartlett, I. Sutskever, and P. Abbeel. Rl2: Fast reinforcement learning via slow reinforcement learning. Technical report, UC Berkeley and OpenAI, 2016.

[12] Li, Ke and Malik, Jitendra. Learning to optimize. International Conference on Learning Representations (ICLR), 2017.

[13] Edwards, Harrison and Storkey, Amos. Towards a neural statistician. International Conference on Learning Representations (ICLR), 2017.

[14] Parisotto, Emilio, Ba, Jimmy Lei, and Salakhutdinov, Ruslan. Actor-mimic: Deep multitask and transfer reinforcement learning. International Conference on Learning Representations (ICLR), 2016.

[15] Ravi, Sachin and Larochelle, Hugo. Optimization as a model for few-shot learning. In International Conference on Learning Representations (ICLR), 2017.

[16] Finn, C., Abbeel, P., & Levine, S. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. arXiv preprint arXiv:1703.03400.

[17] Chen, Y., Hoffman, M. W., Colmenarejo, S. G., Denil, M., Lillicrap, T. P., & de Freitas, N. (2016). Learning to Learn for Global Optimization of Black Box Functions. arXiv preprint arXiv:1611.03824.

[18] Munkhdalai T, Yu H. Meta Networks. arXiv preprint arXiv:1703.00837, 2017.

[19] Duan Y, Andrychowicz M, Stadie B, et al. One-Shot Imitation Learning. arXiv preprint arXiv:1703.07326, 2017.

[20] Woodward M, Finn C. Active One-shot Learning. arXiv preprint arXiv:1702.06559, 2017.

[21] Wichrowska O, Maheswaranathan N, Hoffman M W, et al. Learned Optimizers that Scale and Generalize. arXiv preprint arXiv:1703.04813, 2017.

[22] Hariharan, Bharath, and Ross Girshick. Low-shot visual object recognition arXiv preprint arXiv:1606.02819 (2016).

[23] Wang J X, Kurth-Nelson Z, Tirumala D, et al. Learning to reinforcement learn. arXiv preprint arXiv:1611.05763, 2016.

[24] Flood Sung, Zhang L, Xiang T, Hospedales T, et al. Learning to Learn: Meta-Critic Networks for Sample Efficient Learning. arXiv preprint arXiv:1706.09529, 2017.

[25] Li Z, Zhou F, Chen F, et al. Meta-SGD: Learning to Learn Quickly for Few Shot Learning. arXiv preprint arXiv:1707.09835, 2017.

[26] Mishra N, Rohaninejad M, Chen X, et al. Meta-Learning with Temporal Convolutions. arXiv preprint arXiv:1707.03141, 2017.

[27] Frans K, Ho J, Chen X, et al. Meta Learning Shared Hierarchies. arXiv preprint arXiv:1710.09767, 2017.

[28] Finn C, Yu T, Zhang T, et al. One-shot visual imitation learning via meta-learning. arXiv preprint arXiv:1709.04905, 2017.

[29] Flood Sung, Yongxin Yang, Zhang Li, Xiang T,Philip Torr, Hospedales T, et al Learning to Compare: Relation Network for Few Shot Learning. arXiv preprint arXiv:1711.06025, 2017.

[30] Brenden M Lake, Ruslan Salakhutdinov, Joshua B Tenenbaum Human-level concept learning through probabilistic program induction. In Science, volume 350, pp. 1332-1338, 2015.

[32] Xu D, Nair S, Zhu Y, et al. Neural task programming: Learning to generalize across hierarchical tasks. arXiv preprint arXiv:1710.01813, 2017.

[33] Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., & Vedaldi, A. (2016). Learning feed-forward one-shot learners. In Advances in Neural Information Processing Systems (pp. 523-531).

[34] Wang, Yu-Xiong, and Martial Hebert. Learning to learn: Model regression networks for easy small sample learning.European Conference on Computer Vision. Springer International Publishing, 2016.

[35] Triantafillou, Eleni, Hugo Larochelle, Jake Snell, Josh Tenenbaum, Kevin Jordan Swersky, Mengye Ren, Richard Zemel, and Sachin Ravi. Meta-Learning for Semi-Supervised Few-Shot Classification. ICLR 2018.

[36] Rabinowitz, Neil C., Frank Perbet, H. Francis Song, Chiyuan Zhang, S. M. Eslami, and Matthew Botvinick. Machine Theory of Mind. arXiv preprint arXiv:1802.07740 (2018).

[37] Reed, Scott, Yutian Chen, Thomas Paine, Aäron van den Oord, S. M. Eslami, Danilo Rezende, Oriol Vinyals, and Nando de Freitas. Few-shot Autoregressive Density Estimation: Towards Learning to Learn Distributions. arXiv preprint arXiv:1710.10304 (2017).

[38] Xu, Zhongwen, Hado van Hasselt, and David Silver. Meta-Gradient Reinforcement Learning arXiv preprint arXiv:1805.09801 (2018).

[39] Xu, Kelvin, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. Learning a Prior over Intent via Meta-Inverse Reinforcement Learning arXiv preprint arXiv:1805.12573 (2018).

[40] Finn, Chelsea, Kelvin Xu, and Sergey Levine. Probabilistic Model-Agnostic Meta-Learning arXiv preprint arXiv:1806.02817 (2018).

[41] Gupta, Abhishek, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised Meta-Learning for Reinforcement Learning arXiv preprint arXiv:1806.04640(2018).

[42] Yoon, Sung Whan, Jun Seo, and Jaekyun Moon. Meta Learner with Linear Nulling arXiv preprint arXiv:1806.01010 (2018).

[43] Kim, Taesup, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn. Bayesian Model-Agnostic Meta-Learning arXiv preprint arXiv:1806.03836 (2018).

[44] Gupta, Abhishek, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-Reinforcement Learning of Structured Exploration Strategies arXiv preprint arXiv:1802.07245 (2018).

[45] Clavera, Ignasi, Anusha Nagabandi, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Learning to Adapt: Meta-Learning for Model-Based Control arXiv preprint arXiv:1803.11347 (2018).

[46] Houthooft, Rein, Richard Y. Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski, Jonathan Ho, and Pieter Abbeel. Evolved policy gradients arXiv preprint arXiv:1802.04821 (2018).

[47] Xu, Tianbing, Qiang Liu, Liang Zhao, Wei Xu, and Jian Peng. Learning to Explore with Meta-Policy Gradient arXiv preprint arXiv:1803.05044 (2018).

[48] Stadie, Bradly C., Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya Sutskever. Some considerations on learning to explore via meta-reinforcement learning arXiv preprint arXiv:1803.01118 (2018).

(转)Paper list of Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning的更多相关文章

  1. Targeted Learning R Packages for Causal Inference and Machine Learning(转)

    Targeted learning methods build machine-learning-based estimators of parameters defined as features ...

  2. Evolutionary Computing: [reading notes]On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System

    resource: On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System ...

  3. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  4. [DEEP LEARNING An MIT Press book in preparation]Deep Learning for AI

    动人的DL我们有六个月的时间,积累了一定的经验,实验,也DL有了一些自己的想法和理解.曾经想扩大和加深DL相关方面的一些知识. 然后看到了一个MIT按有关的对出版物DL图书http://www.iro ...

  5. Learning How to Learn, Part 1

    Jan 8, 2015 • vancexu Learning How to Learn: Powerful mental tools to help you master tough subjects ...

  6. Cousera课程Learning How to Learn学习报告

    花了三天完成了Cousera上的Learning how to learn的课程,由于未完成批阅他人作业,所以分不是很高,但是老师讲的课程非常的好,值得一听: 课程的笔记: 我们的一生是一个不断接触和 ...

  7. 【转载】论文笔记系列-Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning

    一. 引出主题¶ 深度学习领域一直存在一个比较严重的问题——“灾难性遗忘”,即一旦使用新的数据集去训练已有的模型,该模型将会失去对原数据集识别的能力.为解决这一问题,本文提出了树卷积神经网络,通过先将 ...

  8. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 0、学习目标

    1. Understand the major trends driving the rise of deep learning.2. Be able to explain how deep lear ...

  9. Learning How to Learn学习笔记(转)

    add by zhj: 工作中提高自己水平的最重要的一点是——快速的学习能力.这篇文章就是探讨这个问题的,掌握了快速学习能力的规律,你自然就有了快速学习能力了. 原文:Learning How to ...

随机推荐

  1. GitHub 代码上传

    方法一 登录GitHub后,点击下面的图 New responsitory 按钮 或者点击绿色按钮 New repository,新建一个新建一个远程仓库(remote repository),点击后 ...

  2. Spark学习之路 (十八)SparkSQL简单使用

    一.SparkSQL的进化之路 1.0以前: Shark 1.1.x开始: SparkSQL(只是测试性的)  SQL 1.3.x: SparkSQL(正式版本)+Dataframe 1.5.x: S ...

  3. Spark学习之路 (二)Spark2.3 HA集群的分布式安装

    一.下载Spark安装包 1.从官网下载 http://spark.apache.org/downloads.html 2.从微软的镜像站下载 http://mirrors.hust.edu.cn/a ...

  4. DBUtils (30)

    DBUtils是java编程中的数据库操作实用工具,小巧简单实用. DBUtils封装了对JDBC的操作,简化了JDBC操作,可以少写代码. Dbutils三个核心功能介绍 一.  QueryRunn ...

  5. mybatis源码解析5---SqlSession解析

    由之前解析可知,mybatis启动的时候会加载XML配置文件解析生成全局配置对象Configuration对象,SqlSessionFactoryBuilder类会根据Configuration对象创 ...

  6. CATALINA_OPTS和 JAVA_OPTS区别

    在Tomcat的catalina.sh文件中的启停server脚本中都应用到了两个变量: CATALINA_OPTS和JAVA_OPTS.用于保存Tomcat运行所需的各种参数. 他们在文件中的注释如 ...

  7. [转载]C#堆栈讲解

    1:栈就是堆栈,因为堆和堆栈这样说太拗口了,搞得像绕口令,所以有些时候就把堆栈简称为栈.堆和栈,你看这又多舒服.但无论什么时候,堆栈都不等于堆和栈,必须说,堆和栈或者堆和堆栈. 2:值类型变量和引用类 ...

  8. linux /etc/shadow--passwd/pam.d/system-auth文件详解

     在linux操作系统中, /etc/passwd文件中的每个用户都有一个对应的记录行,记录着这个用户的一下基本属性.该文件对所有用户可读.   而/etc/shadow文件正如他的名字一样,他是pa ...

  9. 利用crontab定时备份nginx访问日志(也可以说是定时切分日志)

    在我们的工作中,肯定会涉及到分析访问日志. 但是如果访问日志都集中存在于一个文件中,那数据量就太大了,并且也不利于我们进行分析. 所以我们需要对访问日志进行按时间切割. 思路: 我们可以利用linux ...

  10. Redis Desktop Manager 利用ssh连接 Redis

    需开启6379端口,如果不设置密码,就忽略1,2步骤 第一步: 第二步: 第三步: 第四步: 第五步: