HDU 5649 DZY Loves Sorting(二分答案+线段树/线段树合并+线段树分割)
题意
一个 \(1\) 到 \(n\) 的全排列,\(m\) 种操作,每次将一段区间 \([l,r]\) 按升序或降序排列,求 \(m\) 次操作后的第 \(k\) 位。
\(1 \leq n \leq 10^5\)
思路
两个 \(\log\) 的做法展现了二分答案的强大功能。首先二分枚举第 \(k\) 位的值,然后将小于等于它的数都变为 \(1\) ,大于它的数变为 \(0\) ,线段树可以实现对 \(01\) 序列快速的排序,按要求进行排序,然后如果第 \(k\) 位为 \(1\) 说明这个数小于等于 \(k\) ,就这样不断二分下来,得到的边界值就是第 \(k\) 位真实的值。这个做法是离线的,有两个 \(\log\) ,但代码好实现。
但这道题,有一个 \(\log\) 、在线的做法。考虑每个位置开一棵动点线段树,把这个位置的数扔进线段树,区间的排序直接用线段树合并进行,但是如果区间的某个端点落在某一个完整的区间内,那就会破坏这个区间的单调性,所以还要线段树分割。我们对于一个完整区间,存下是升序还是降序,然后“分割”出需要的元素,线段树分割代码如下:
void split(int &x,int y,int K,int l,int r) //y拆前K个给x,合并前将初始x清零(x是一个空树)
{
create(x);
if(l==r){sum[x]=sum[y],sum[y]=0;return;}
int mid=(l+r)>>1;
if(K<=sum[lson[y]])
{
split(lson[x],lson[y],K,l,mid);
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
return;
}
split(rson[x],rson[y],K-sum[lson[y]],mid+1,r);
lson[x]=lson[y],lson[y]=0;
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
}
和线段树合并的写法大致相同。
初始有 \(n\log n\) 个点,每次操作最多分割出 \(2\log n\) 个节点 ,所以空间复杂度为 \(O(n\log n)\)。
合并初始的 \(n\) 个节点有一个 \(n\log n\) ,而分割的节点也最多是 \(2 n\log n\) ,所以时间复杂度也是 \(O(n\log n)\)。
代码
#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=1e5+5;
const int NN=N*60;
bool mmr1;
int sum[NN],lson[NN],rson[NN];
int rt[N],tot;
void build()
{
memset(rt,0,sizeof(rt));
sum[tot=0]=lson[0]=rson[0]=0;
}
void create(int &k){if(!k)k=++tot,sum[k]=lson[k]=rson[k]=0;}
void update(int &k,int x,int l,int r)
{
create(k);
sum[k]++;
if(l==r)return;
int mid=(l+r)>>1;
if(x<=mid)update(lson[k],x,l,mid);
else update(rson[k],x,mid+1,r);
}
int query1(int k,int K,int l,int r)
{
if(l==r)
{
if(sum[k]!=1)return -1;
return l;
}
int mid=(l+r)>>1;
if(K<=sum[lson[k]])return query1(lson[k],K,l,mid);
else return query1(rson[k],K-sum[lson[k]],mid+1,r);
}
int query2(int k,int K,int l,int r)
{
if(l==r)
{
if(sum[k]!=1)return -1;
return l;
}
int mid=(l+r)>>1;
if(K<=sum[rson[k]])return query2(rson[k],K,mid+1,r);
else return query2(lson[k],K-sum[rson[k]],l,mid);
}
void merge(int &x,int y,int l,int r) //y并进x
{
if(!x||!y){x=(x|y);return;}
if(l==r){sum[x]+=sum[y];return;}
int mid=(l+r)>>1;
merge(lson[x],lson[y],l,mid);
merge(rson[x],rson[y],mid+1,r);
sum[x]=sum[lson[x]]+sum[rson[x]];
}
void split1(int &x,int y,int K,int l,int r) //y拆前K个给x
{
create(x);
if(l==r){sum[x]=sum[y],sum[y]=0;return;}
int mid=(l+r)>>1;
if(K<=sum[lson[y]])
{
split1(lson[x],lson[y],K,l,mid);
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
return;
}
split1(rson[x],rson[y],K-sum[lson[y]],mid+1,r);
lson[x]=lson[y],lson[y]=0;
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
}
void split2(int &x,int y,int K,int l,int r) //y拆后K个给x
{
create(x);
if(l==r){sum[x]=sum[y],sum[y]=0;return;}
int mid=(l+r)>>1;
if(K<=sum[rson[y]])
{
split2(rson[x],rson[y],K,mid+1,r);
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
return;
}
split2(lson[x],lson[y],K-sum[rson[y]],l,mid);
rson[x]=rson[y],rson[y]=0;
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
}
set<int>st;
set<int>::iterator it,it1;
bool f[N];
int find_leftmost(int x)
{
it=st.upper_bound(x);
return *--it;
}
int find_rightmost(int x)
{
it=st.upper_bound(x);
return (*it)-1;
}
bool mmr2;
int main()
{
int T,n,m,K;
scanf("%d",&T);
while(T--)
{
build();
st.clear();
memset(f,0,sizeof(f));
scanf("%d%d",&n,&m);
FOR(i,1,n)
{
int x;
scanf("%d",&x);
update(rt[i],x,1,n);
}
FOR(i,1,n+1)st.insert(i);
while(m--)
{
int op,l,r;
scanf("%d%d%d",&op,&l,&r);
int L=find_leftmost(l);
if(l!=L)
{
if(f[L]==0)rt[l]=0,split1(rt[l],rt[L],l-L,1,n);
else rt[l]=0,split2(rt[l],rt[L],l-L,1,n);
swap(rt[l],rt[L]);
f[l]=f[L];
st.insert(l);
}
int R=find_rightmost(r),_R=find_leftmost(r);
if(r!=R)
{
f[r+1]=f[_R];
if(f[_R]==0)rt[r+1]=0,split2(rt[r+1],rt[_R],R-r,1,n);
else rt[r+1]=0,split1(rt[r+1],rt[_R],R-r,1,n);
st.insert(r+1);
}
f[l]=op;
it=st.find(l),it++;
while((*it)<=r)
{
merge(rt[l],rt[*it],1,n);
it1=it,it++,st.erase(it1);
}
}
scanf("%d",&K);
int x=find_leftmost(K);
if(f[x]==0)printf("%d\n",query1(rt[x],K-x+1,1,n));
else printf("%d\n",query2(rt[x],K-x+1,1,n));
}
return 0;
}
HDU 5649 DZY Loves Sorting(二分答案+线段树/线段树合并+线段树分割)的更多相关文章
- hdu 5649 DZY Loves Sorting 二分+线段树
题目链接 给一个序列, 两种操作, 一种是将[l, r]里所有数升序排列, 一种是降序排列. 所有操作完了之后, 问你a[k]等于多少. 真心是涨见识了这题..好厉害. 因为最后只询问一个位置, 所以 ...
- 数据结构(线段树):HDU 5649 DZY Loves Sorting
DZY Loves Sorting Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Oth ...
- HDU 5649.DZY Loves Sorting-线段树+二分-当前第k个位置的数
DZY Loves Sorting Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Oth ...
- hdu 5646 DZY Loves Partition 二分+数学分析+递推
链接:http://acm.hdu.edu.cn/showproblem.php?pid=5646 题意:将n分成k个正整数之和,要求k个数全部相同:并且这k个数的乘积最大为多少?结果mod 1e^9 ...
- BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列
BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列 题意: 分析: 拆成链,二分答案,奇偶两个单调队列维护最大子段和,记录方案. 代码: #include <cstdio&g ...
- hdu 5195 DZY Loves Topological Sorting 线段树+拓扑排序
DZY Loves Topological Sorting Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/sho ...
- hdu 5195 DZY Loves Topological Sorting BestCoder Round #35 1002 [ 拓扑排序 + 优先队列 || 线段树 ]
传送门 DZY Loves Topological Sorting Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131 ...
- hdu 5195 DZY Loves Topological Sorting (拓扑排序+线段树)
DZY Loves Topological Sorting Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 ...
- HDU 5646 DZY Loves Partition 数学 二分
DZY Loves Partition 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5646 Description DZY loves parti ...
随机推荐
- Spark学习之路 (十八)SparkSQL简单使用
一.SparkSQL的进化之路 1.0以前: Shark 1.1.x开始: SparkSQL(只是测试性的) SQL 1.3.x: SparkSQL(正式版本)+Dataframe 1.5.x: S ...
- Spark学习之路 (十)SparkCore的调优之Shuffle调优
摘抄自https://tech.meituan.com/spark-tuning-pro.html 一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘I ...
- rgferg
dfgsdfg fdvgdsafg fgdfgdfg
- TF-IDF基本原理
1.TF-IDF介绍 TF/IDF(term frequency–inverse document frequency)用以评估字词 对于一个文件集其中一份文件的重要程度.字词的重要性随着它在文件中出 ...
- python的一些遗漏用法
一. 补充基础数据类型的相关知识点 1. str. join() 把列表变成字符串 li = ["李嘉诚", "麻花藤", "⻩海峰", & ...
- svn钩子
#!/bin/sh #修改为服务编码 export.UTF-8 #Set variable REPOS="$1" REV="$2" #svn安装脚本目录 SVN ...
- PHP图片裁剪与缩放示例(无损裁剪图片)
<?php /* *exif_imagetype -- 判断一个图像的类型 *功能说明:函数功能是把一个图像裁剪为任意大小的图像,并保持图像不变形 *参数说明:输入 需要处理图片的 文件名,生成 ...
- Vue中的事件与常见的问题处理
Vue的事件:获取事件对象$event: 事件冒泡:事件会向上传播 原生js阻止事件冒泡,需要先获取事件对象,再调用stopPropagation()方法: vue事件修饰符stop,例@clik.s ...
- 如何用git将项目代码上传到github
注册账户以及创建仓库 要想使用github第一步当然是注册github账号了.之后就可以创建仓库了(免费用户只能建公共仓库),Create a New Repository,填好名称后Create,之 ...
- 【题解】luogu P3386 【模板】二分图匹配
题面:https://www.luogu.org/problemnew/show/P3386 好像没有人发Ford-Fulkerson,我来一发, 这道题和P2756飞行员配对方案问题方法一样,网络流 ...