题意

一个 \(1\) 到 \(n\) 的全排列,\(m\) 种操作,每次将一段区间 \([l,r]\) 按升序或降序排列,求 \(m\) 次操作后的第 \(k\) 位。

\(1 \leq n \leq 10^5\)

思路

两个 \(\log\) 的做法展现了二分答案的强大功能。首先二分枚举第 \(k\) 位的值,然后将小于等于它的数都变为 \(1\) ,大于它的数变为 \(0\) ,线段树可以实现对 \(01\) 序列快速的排序,按要求进行排序,然后如果第 \(k\) 位为 \(1\) 说明这个数小于等于 \(k\) ,就这样不断二分下来,得到的边界值就是第 \(k\) 位真实的值。这个做法是离线的,有两个 \(\log\) ,但代码好实现。

但这道题,有一个 \(\log\) 、在线的做法。考虑每个位置开一棵动点线段树,把这个位置的数扔进线段树,区间的排序直接用线段树合并进行,但是如果区间的某个端点落在某一个完整的区间内,那就会破坏这个区间的单调性,所以还要线段树分割。我们对于一个完整区间,存下是升序还是降序,然后“分割”出需要的元素,线段树分割代码如下:

void split(int &x,int y,int K,int l,int r)		//y拆前K个给x,合并前将初始x清零(x是一个空树)
{
create(x);
if(l==r){sum[x]=sum[y],sum[y]=0;return;}
int mid=(l+r)>>1;
if(K<=sum[lson[y]])
{
split(lson[x],lson[y],K,l,mid);
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
return;
}
split(rson[x],rson[y],K-sum[lson[y]],mid+1,r);
lson[x]=lson[y],lson[y]=0;
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
}

和线段树合并的写法大致相同。

初始有 \(n\log n\) 个点,每次操作最多分割出 \(2\log n\) 个节点 ,所以空间复杂度为 \(O(n\log n)\)。

合并初始的 \(n\) 个节点有一个 \(n\log n\) ,而分割的节点也最多是 \(2 n\log n\) ,所以时间复杂度也是 \(O(n\log n)\)。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=1e5+5;
const int NN=N*60;
bool mmr1;
int sum[NN],lson[NN],rson[NN];
int rt[N],tot;
void build()
{
memset(rt,0,sizeof(rt));
sum[tot=0]=lson[0]=rson[0]=0;
}
void create(int &k){if(!k)k=++tot,sum[k]=lson[k]=rson[k]=0;}
void update(int &k,int x,int l,int r)
{
create(k);
sum[k]++;
if(l==r)return;
int mid=(l+r)>>1;
if(x<=mid)update(lson[k],x,l,mid);
else update(rson[k],x,mid+1,r);
}
int query1(int k,int K,int l,int r)
{
if(l==r)
{
if(sum[k]!=1)return -1;
return l;
}
int mid=(l+r)>>1;
if(K<=sum[lson[k]])return query1(lson[k],K,l,mid);
else return query1(rson[k],K-sum[lson[k]],mid+1,r);
}
int query2(int k,int K,int l,int r)
{
if(l==r)
{
if(sum[k]!=1)return -1;
return l;
}
int mid=(l+r)>>1;
if(K<=sum[rson[k]])return query2(rson[k],K,mid+1,r);
else return query2(lson[k],K-sum[rson[k]],l,mid);
}
void merge(int &x,int y,int l,int r) //y并进x
{
if(!x||!y){x=(x|y);return;}
if(l==r){sum[x]+=sum[y];return;}
int mid=(l+r)>>1;
merge(lson[x],lson[y],l,mid);
merge(rson[x],rson[y],mid+1,r);
sum[x]=sum[lson[x]]+sum[rson[x]];
}
void split1(int &x,int y,int K,int l,int r) //y拆前K个给x
{
create(x);
if(l==r){sum[x]=sum[y],sum[y]=0;return;}
int mid=(l+r)>>1;
if(K<=sum[lson[y]])
{
split1(lson[x],lson[y],K,l,mid);
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
return;
}
split1(rson[x],rson[y],K-sum[lson[y]],mid+1,r);
lson[x]=lson[y],lson[y]=0;
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
}
void split2(int &x,int y,int K,int l,int r) //y拆后K个给x
{
create(x);
if(l==r){sum[x]=sum[y],sum[y]=0;return;}
int mid=(l+r)>>1;
if(K<=sum[rson[y]])
{
split2(rson[x],rson[y],K,mid+1,r);
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
return;
}
split2(lson[x],lson[y],K-sum[rson[y]],l,mid);
rson[x]=rson[y],rson[y]=0;
sum[x]=sum[lson[x]]+sum[rson[x]];
sum[y]=sum[lson[y]]+sum[rson[y]];
}
set<int>st;
set<int>::iterator it,it1;
bool f[N]; int find_leftmost(int x)
{
it=st.upper_bound(x);
return *--it;
}
int find_rightmost(int x)
{
it=st.upper_bound(x);
return (*it)-1;
}
bool mmr2; int main()
{
int T,n,m,K;
scanf("%d",&T);
while(T--)
{
build();
st.clear();
memset(f,0,sizeof(f));
scanf("%d%d",&n,&m);
FOR(i,1,n)
{
int x;
scanf("%d",&x);
update(rt[i],x,1,n);
}
FOR(i,1,n+1)st.insert(i); while(m--)
{
int op,l,r;
scanf("%d%d%d",&op,&l,&r);
int L=find_leftmost(l);
if(l!=L)
{
if(f[L]==0)rt[l]=0,split1(rt[l],rt[L],l-L,1,n);
else rt[l]=0,split2(rt[l],rt[L],l-L,1,n);
swap(rt[l],rt[L]);
f[l]=f[L];
st.insert(l);
} int R=find_rightmost(r),_R=find_leftmost(r);
if(r!=R)
{
f[r+1]=f[_R];
if(f[_R]==0)rt[r+1]=0,split2(rt[r+1],rt[_R],R-r,1,n);
else rt[r+1]=0,split1(rt[r+1],rt[_R],R-r,1,n);
st.insert(r+1);
} f[l]=op;
it=st.find(l),it++;
while((*it)<=r)
{
merge(rt[l],rt[*it],1,n);
it1=it,it++,st.erase(it1);
}
}
scanf("%d",&K);
int x=find_leftmost(K);
if(f[x]==0)printf("%d\n",query1(rt[x],K-x+1,1,n));
else printf("%d\n",query2(rt[x],K-x+1,1,n));
}
return 0;
}

HDU 5649 DZY Loves Sorting(二分答案+线段树/线段树合并+线段树分割)的更多相关文章

  1. hdu 5649 DZY Loves Sorting 二分+线段树

    题目链接 给一个序列, 两种操作, 一种是将[l, r]里所有数升序排列, 一种是降序排列. 所有操作完了之后, 问你a[k]等于多少. 真心是涨见识了这题..好厉害. 因为最后只询问一个位置, 所以 ...

  2. 数据结构(线段树):HDU 5649 DZY Loves Sorting

    DZY Loves Sorting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Oth ...

  3. HDU 5649.DZY Loves Sorting-线段树+二分-当前第k个位置的数

    DZY Loves Sorting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Oth ...

  4. hdu 5646 DZY Loves Partition 二分+数学分析+递推

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5646 题意:将n分成k个正整数之和,要求k个数全部相同:并且这k个数的乘积最大为多少?结果mod 1e^9 ...

  5. BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列

    BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列 题意: 分析: 拆成链,二分答案,奇偶两个单调队列维护最大子段和,记录方案. 代码: #include <cstdio&g ...

  6. hdu 5195 DZY Loves Topological Sorting 线段树+拓扑排序

    DZY Loves Topological Sorting Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/sho ...

  7. hdu 5195 DZY Loves Topological Sorting BestCoder Round #35 1002 [ 拓扑排序 + 优先队列 || 线段树 ]

    传送门 DZY Loves Topological Sorting Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131 ...

  8. hdu 5195 DZY Loves Topological Sorting (拓扑排序+线段树)

    DZY Loves Topological Sorting Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  9. HDU 5646 DZY Loves Partition 数学 二分

    DZY Loves Partition 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5646 Description DZY loves parti ...

随机推荐

  1. XMLHttpRequest对象(Ajax)的状态码(readystate) HTTP状态代码(status)

    2018-11-28 14:19:00 来自 :XMLHttpRequest对象(Ajax)的状态码(readystate)  HTTP状态代码(status) XMLHttpRequest对象(Aj ...

  2. Keep On Movin (贪心)

    #include<bits/stdc++.h> using namespace std; int main(){ int T, n, a;scanf("%d",& ...

  3. python pandas 基础理解

    其实每一篇博客我都要用很多琐碎的时间片段来学完写完,每次一点点,用到了就学一点,学一点就记录一点,要用上好几天甚至一两个礼拜才感觉某一小类的知识结构学的差不多了. Pandas 是基于 NumPy 的 ...

  4. python 读csv文件对列名进行合法性验证

    如果正在读取CSV 数据并将它们转换为命名元组,需要注意对列名进行合法性认证.例如,一个CSV 格式文件有一个包含非法标识符的列头行,这样最终会导致在创建一个命名元组时产生一个ValueError 异 ...

  5. python 将字节写入文本文件

    想在文本模式打开的文件中写入原始的字节数据 将字节数据直接写入文件的缓冲区即可 >>> import sys >>> sys.stdout.write(b'Hell ...

  6. Linux服务器配置---安装nfs

    安装nfs NFS是Network File System的缩写,即网络文件系统.客户端通过挂载的方式将NFS服务器端共享的数据目录挂载到本地目录下. 由于NFS支持的功能很多,不同功能会使用不同程序 ...

  7. 区块链区块的生成和链接,比特币btc的产生,UTXO的生成和消耗,比特币系统

    区块链区块的生成和链接,比特币btc的产生,UTXO的生成和消耗,比特币系统 区块链区块的生成和链接,比特币btc的产生,UTXO的生成和消耗,比特币系统

  8. tomcat2章2

    package ex02.pyrmont1; import java.io.File; public class Constants { public static final String WEB_ ...

  9. 课堂测试代码(未完全实现,部分代码有bug,仅供参考)

    //信1705-3 20173507 周龙海package account; public class account { private String accountID; private Stri ...

  10. 一文看懂显示关键材料之彩色滤光片(Color Filter)

    http://www.sohu.com/a/219398623_119960 液晶显示器的背光源发出的白光,而想要获得彩色显示,必须依靠显示关键材料-彩色滤光片. 图片来源:网络公开资料 什么是彩色滤 ...