HDU 3183 - A Magic Lamp - [RMQ][ST算法]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183
Problem Description
Kiki likes traveling. One day she finds a magic lamp, unfortunately the genie in the lamp is not so kind. Kiki must answer a question, and then the genie will realize one of her dreams.
The question is: give you an integer, you are allowed to delete exactly m digits. The left digits will form a new integer. You should make it minimum.
You are not allowed to change the order of the digits. Now can you help Kiki to realize her dream?
Input
There are several test cases.
Each test case will contain an integer you are given (which may at most contains 1000 digits.) and the integer m (if the integer contains n digits, m will not bigger then n). The given integer will not contain leading zero.
Output
For each case, output the minimum result you can get in one line.
If the result contains leading zero, ignore it.
Sample Input
178543 4
1000001 1
100001 2
12345 2
54321 2
Sample Output
13
1
0
123
321
题意:
给你一个 $n$ 位的数字,你要删除其中的 $m$ 位,使得剩下来的每一位组成一个新数字是最小的。
题解:
换句话说,就是要在 $n$ 位中选择 $k=n-m$ 位数字组成新数字,使其最小。
显然,新数字的最高位必须在 $[1,n-k+1]$ 内,否则后面的数字将不够用。因此我们可以按照贪心的策略在 $[1,n-k+1]$ 内寻找最小的数字作为最高位。
然后,就转变为一个子问题:去掉选定的最高位,以及其前面的所有数字,剩下来的一串数字里,寻找 $k-1$ 位数字组成最小新数字。
一般来说,线段树是区间查询最大值的一种非常优秀的解决方法。不过本题没有修改操作,用线段树比较浪费。本题适合使用解决RMQ问题的著名的ST算法。
ST算法是基于倍增思想的。对于一个给定的序列 $a[1 \sim n]$,它能够在 $O(n \log n)$ 的预处理后,以 $O(1)$ 的时间复杂度在线地给出任意区间的最值。
首先我们知道,对于序列 $a[1 \sim n]$,它的子区间数目是 $O(n^2)$ 的。根据倍增思想,我们在这 $O(n^2)$ 的状态空间内选择一些 $2$ 的整数次幂的位置作为关键位置。
假设 $f(i,j)$ 代表了区间 $[i,i+2^j-1]$ 的最大值,即以 $a[i]$ 为起始的 $2^j$ 个数的最大值。显然递推边界为:对于任意的 $i \in [1,n]$,有$f(i,0) = a[i]$。
接下来,在递推求 $f(i,j)$ 时,区间的长度是成倍增长的,即 $f(i,j) = \max[f(i,j-1),f(i+2^{j-1},j-1)]$。从这个递推式不难看出,只要我们从小到大枚举 $j$,且对于固定的 $j$ 枚举 $i$ 即可。
而当我们要求 $[l,r]$ 的最大值时,我们可以求得 $k = \log(r-l+1)$,显然从 $l$ 往后的 $2^k$ 个数和从$r$ 往前的 $2^k$ 个数能够完全覆盖 $[l,r]$,因此只需要返回 $f(l,k)$ 和 $f(r-2^k+1,k)$ 中的较大值即可。
以下为求解RMQ问题的ST算法模板:
namespace ST
{
int n;
int f[maxn][(int)log2(maxn)+];
void init(int _n,int* a)
{
n=_n;
for(int i=;i<=n;i++) f[i][]=a[i];
for(int j=;(<<j)<=n;j++)
for(int i=;i<=n-(<<j)+;i++)
f[i][j]=max(f[i][j-],f[i+(<<(j-))][j-]);
}
int query(int l,int r)
{
int k=log2(r-l+);
return max(f[l][k],f[r-(<<k)+][k]);
}
}
AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii;
const int maxn=; int n,m,k;
char num[maxn];
queue<int> q; namespace ST
{
int n;
pii f[maxn][(int)log2(maxn)+]; //first存储最小值,second存储最小值位置
pii min(const pii& a,const pii& b)
{
if(a.first==b.first)
return a.second<b.second?a:b;
else
return a.first<b.first?a:b;
}
void init(int _n,char* a)
{
n=_n;
for(int i=;i<=n;i++) f[i][]=make_pair(a[i]-'',i);
for(int j=;(<<j)<=n;j++)
for(int i=;i<=n-(<<j)+;i++)
f[i][j]=min(f[i][j-],f[i+(<<(j-))][j-]);
}
pii query(int l,int r)
{
int k=log2(r-l+);
return min(f[l][k],f[r-(<<k)+][k]);
}
} void solve(queue<int>& q,int l,int r,int k)
{
if(k==) return;
pii x=ST::query(l,r-k+);
q.push(x.first);
solve(q,x.second+,r,k-);
}
int main()
{
while(scanf("%s%d",num+,&m)!=EOF)
{
n=strlen(num+), k=n-m;
ST::init(n,num);
solve(q,,n,k);
while(!q.empty())
{
if(q.front()==) q.pop();
else break;
}
if(q.empty()) q.push();
while(!q.empty())
{
printf("%d",q.front());
q.pop();
}
printf("\n");
}
}
HDU 3183 - A Magic Lamp - [RMQ][ST算法]的更多相关文章
- hdu 3183 A Magic Lamp RMQ ST 坐标最小值
hdu 3183 A Magic Lamp RMQ ST 坐标最小值 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 题目大意: 从给定的串中挑 ...
- hdu 3183 A Magic Lamp(RMQ)
题目链接:hdu 3183 A Magic Lamp 题目大意:给定一个字符串,然后最多删除K个.使得剩下的组成的数值最小. 解题思路:问题等价与取N-M个数.每次取的时候保证后面能取的个数足够,而且 ...
- HDU 3183 A Magic Lamp(RMQ问题, ST算法)
原题目 A Magic Lamp Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 3183 A Magic Lamp rmq或者暴力
A Magic Lamp Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Pro ...
- hdu 3183 A Magic Lamp(RMQ)
A Magic Lamp Time Limi ...
- HDU 3183 A Magic Lamp(二维RMQ)
第一种做法是贪心做法,只要前面的数比后面的大就把他删掉,这种做法是正确的,也比较好理解,这里就不说了,我比较想说一下ST算法,RMQ的应用 主要是返回数组的下标,RMQ要改成<=(这里是个坑点, ...
- hdu 3183 A Magic Lamp 【RMQ】
<题目链接> <转载于 >>> > 题目大意: 给出一个长度不超过1000位的数,求删去m位数字以后形成的最小的数字是多少. 解题分析: 分析:我们可以把题 ...
- hdu 3183 A Magic Lamp(给一个n位的数,从中删去m个数字,使得剩下的数字组成的数最小(顺序不能变),然后输出)
1.题目大意是,给你一个1000位的数,要你删掉m个为,求结果最小数. 思路:在n个位里面删除m个位.也就是找出n-m个位组成最小数 所以在区间 [0, m]里面找最小的数.相应的下标标号i 接着找区 ...
- hdu 3183 A Magic Lamp 贪心
#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm& ...
随机推荐
- excel表格 xls、xlsx 读取
public static void main(String[] args) throws Exception { // getdslContext(); String file = "F: ...
- git checkout -b mybranch和git checkout mybranch
创建分支: $ git branch mybranch切换分支: $ git checkout mybranch创建并切换分支: $ git checkout -b mybranch更新maste ...
- [转]linux(ubuntu)上运行网易popo
popo没有linux版,连web版和android版都没有,这个实在是不方便.搞了很久,终于搞定了ubuntu上运行popo,暂时还没出现什么问题. 首先要安装PlayOnLinux,直接安装win ...
- 转 HashMap 比较透彻的分析
HashMap 的实现原理 原文: HashMap 的实现原理 众所周知,HashMap是用来存储Key-Value键值对的一种集合,这个键值对也叫做Entry,而每个Entry都是存储在数组当中,因 ...
- 爬虫 需要什么样的 CPU,内存 和带宽
所有的需求都看这个图片吧,这个就是我爬取一个网站所用的服务器和服务器资源的消耗情况.
- Instrumentation 功能介绍(javaagent)
利用 Java 代码,即 java.lang.instrument 做动态 Instrumentation 是 Java SE 5 的新特性,它把 Java 的 instrument 功能从本地代码中 ...
- ImageView setImageURI图片不改变\NetWorkImageView 不显示的问题
ImageView 问题描述:图片文件已改变,第二次调用ImageView.setImageURI时无法更新图片 分析:setImageURI方法中对uri进行了缓存,由于第一次加载过了该uri的资源 ...
- [转]Object.keys()和for in的排序问题
原文地址:https://www.jianshu.com/p/a086ff48be6e Object.keys()和for in 具有相同的排列顺序 如果属性名的类型是Number,那么Object. ...
- 【iCore1S 双核心板_ARM】例程十:SYSTICK定时器实验——定时点亮LED
实验原理: 通过STM32的三个GPIO口驱动三色LED的三个通道,设定GPIO为推挽输出,采用 灌电流的方式与LED连接,输出高电平LED灭,输出低电平LED亮,通过系统定时器实现 1s定时,每秒变 ...
- 川崎机器人c#通讯(转)
由于本人在工业自动化行业做机器视觉的工作,所以除了图像处理方面要掌握外,还需要与工业机器人进行通信.最近学习了计算机与川崎机器人的TCP/IP通信,于是在这里记录一下. 除了直接与机器人通信外,有一种 ...