BZOJ.3598.[SCOI2014]方伯伯的商场之旅(贪心 数位DP)
先考虑,对于确定的一个数,怎样移动代价最少(或者移到哪个位置最优)?
假设我们都移到下标\(1\)位置(设集合点为\(1\)),那么移动到下标\(2\)与\(1\)相比代价差为:\(下标<1的石子数和-下标>1的石子数和\)。
如果它为负,那么把移到\(1\)的代价加上它,令集合点变为\(2\)...
这样一直改变集合点,直到 \(下标<p的石子数和 \geq 下标>p的石子数和\)。那么移到\(p\)就是最优的。
这样感觉很对。怎么证明?
我们发现式子左边其实就是前缀和,右边是后缀和。因为石子数非负,所以随着\(p\)移动,前缀和是递增的,后缀和递减。
即如果出现 \(前缀和 \geq 后缀和\) 的情况,前缀和就永远大于等于后缀和了。
那么我们对\([l,r]\)的所有数都进行这个贪心。
首先我们要算出所有数集合到1的代价和。这个可以用数位DP算出(递推数的个数,用个数求和)。
然后枚举\(p=2\sim n\)位,我们可以求 以\(p\)为分界,前缀数位和 小于 后缀数位和 且 在\([0,r]\) 的数的个数。其中每个数会减少的代价就是\(前缀和-后缀和\)。
因为数位和最多差不多是230,可以直接枚举这两个状态。同样数位DP。
\(f[i][j][k][0/1]\)表示当前到第\(i\)位,总数位和为\(j\),\(p\)位之前的数位和为\(k\),是否到上界,的数的个数。
另外还可以直接减掉\(k\)那一维。。
记忆化就好写的多了(还快)。
//49592kb 404ms
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long LL;
const int N=52,M=245;
int A[N];
LL g[N][2],sum[N][2],f[N][M][M][2];
LL Calc(LL x,int base)
{
int n=0;
for(; x; x/=base) A[++n]=x%base;
std::reverse(A+1,A+1+n);//
memset(g,0,sizeof g), memset(sum,0,sizeof sum);
g[0][1]=1;
for(int i=0; i<n; ++i)//好像还是从0方便。。
{
LL v=g[i][1]; int ai=A[i+1];
g[i+1][1]+=v, sum[i+1][1]=sum[i][1]+v*i*ai;
for(int j=0; j<ai; ++j) g[i+1][0]+=v, sum[i+1][0]+=sum[i][1]+v*i*j;
v=g[i][0];
for(int j=0; j<base; ++j) g[i+1][0]+=v, sum[i+1][0]+=sum[i][0]+v*i*j;
}
LL ans=sum[n][0]+sum[n][1];
for(int p=1; p<n; ++p)
{
f[0][0][0][1]=1;
for(int i=0; i<n; ++i)
{
int ai=A[i+1];
if(i+1<=p)
{
LL v;
for(int j=0,lim=i*(base-1); j<=lim; ++j)
{
if(v=f[i][j][j][1])//好不直观。。
{
f[i+1][j+ai][j+ai][1]+=v;//+=
for(int k=0; k<ai; ++k) f[i+1][j+k][j+k][0]+=v;
}
if(v=f[i][j][j][0])
for(int k=0; k<base; ++k) f[i+1][j+k][j+k][0]+=v;
}
}
else
{
LL v;
for(int j=0,lim=i*(base-1); j<=lim; ++j)
for(int k=0,lim2=p*(base-1); k<=lim2; ++k)
{
if(v=f[i][j][k][1])
{
f[i+1][j+ai][k][1]+=v;
for(int l=0; l<ai; ++l) f[i+1][j+l][k][0]+=v;
}
if(v=f[i][j][k][0])
for(int l=0; l<base; ++l) f[i+1][j+l][k][0]+=v;
}
}
}
for(int i=0,lim=p*(base-1); i<=lim; ++i)//pre
for(int j=i+1,lim2=n*(base-1); i+j<=lim2; ++j)//suf
ans+=(i-j)*(f[n][i+j][i][0]+f[n][i+j][i][1]);
for(int i=1; i<=n; ++i)
for(int j=0,lim=i*(base-1); j<=lim; ++j)
for(int k=0,lim2=p*(base-1); k<=lim2; ++k)
f[i][j][k][0]=0, f[i][j][k][1]=0;
}
return ans;
}
int main()
{
LL L,R; int K; scanf("%lld%lld%d",&L,&R,&K);
printf("%lld\n",Calc(R,K)-Calc(L-1,K));
return 0;
}
BZOJ.3598.[SCOI2014]方伯伯的商场之旅(贪心 数位DP)的更多相关文章
- bzoj 3598: [Scoi2014]方伯伯的商场之旅【数位dp】
参考了这个http://www.cnblogs.com/Artanis/p/3751644.html,好像比一般方法好写 大概思想就是先计算出把所有石子都合并到1位置的代价,这样显然有一些是不优的,然 ...
- bzoj 3598 [Scoi2014]方伯伯的商场之旅——数位dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3598 TJ:https://www.cnblogs.com/Zinn/p/9351218.h ...
- BZOJ3598 SCOI2014方伯伯的商场之旅(数位dp)
看到数据范围就可以猜到数位dp了.显然对于一个数最后移到的位置应该是其中位数.于是考虑枚举移到的位置,那么设其左边和为l,左右边和为r,该位置数为p,则需要满足l+p>=r且r+p>=l. ...
- 洛谷P3286 [SCOI2014]方伯伯的商场之旅
题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...
- [BZOJ3598][SCOI2014]方伯伯的商场之旅(数位DP,记忆化搜索)
3598: [Scoi2014]方伯伯的商场之旅 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 449 Solved: 254[Submit][Sta ...
- 【bzoj3598】: [Scoi2014]方伯伯的商场之旅
Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...
- [SCOI2014]方伯伯的商场之旅
Description 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 i 的人面前的第 j 堆的石子的数量,刚好是 i 写成 K 进制后的 ...
- 【数位DP】SCOI2014 方伯伯的商场之旅
题目内容 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子. 说来也巧,位置在 \(i\) 的人面前的第 \(j\) 堆的石子的数量,刚好是 \(i\) 写成 ...
- 【bzoj3598】 Scoi2014—方伯伯的商场之旅
http://www.lydsy.com/JudgeOnline/problem.php?id=3598 (题目链接) 题意 Solution 原来这就是极水的数位dp,呵呵= =,感觉白学了.htt ...
随机推荐
- Docker安装Zookeeper
⒈下载 docker pull zookeeper ⒉运行 docker run --name zk -p 2181:2181 -p 2888:2888 -p 3888:3888 --restart ...
- SpringMVC使用Burlap发布远程服务
参考这篇文章https://www.cnblogs.com/fanqisoft/p/10283156.html 将提供者配置类中的 @Bean public HessianServiceExporte ...
- HTTP协议中PUT和POST使用上的区别
有的观点认为,应该用POST来创建一个资源,用PUT来更新一个资源:有的观点认为,应该用PUT来创建一个资源,用POST来更新一个资源:还有的观点认为可以用PUT和POST中任何一个来做创建或者更新一 ...
- GCC编译过程与动态链接库和静态链接库
1. 库的介绍 库是写好的现有的,成熟的,可以复用的代码.现实中每个程序都要依赖很多基础的底层库,不可能每个人的代码都从零开始,因此库的存在意义非同寻常. 本质上来说库是一种可执行代码的二进制形式,可 ...
- C:详解C中volatile关键字
原文地址:http://www.cnblogs.com/yc_sunniwell/archive/2010/06/24/1764231.html volatile提醒编译器它后面所定义的变量随时都有可 ...
- mysql主从配置 转自http://www.cnblogs.com/sustudy/p/4174189.html
1.确保主数据库与从数据库一模一样. 例如:主数据库里的a的数据库里有b,c,d表,那从数据库里的就应该有一个模子刻出来的a的数据库和b,c,d表 2.在主数据库上创建同步账号. GRANT REPL ...
- 整理一下odoo10在windows系统下部署的流程
odoo10环境搭建 所需依赖: Python3.5 odoo10.0 Node.js PostgreSQL 9.5 PyCharm 专业版 1.首先先安装好Python3.5,并设置好环境变量 2. ...
- 使用JSONP实现跨域通信
引语 Ajax 允许在不干扰 Web 应用程序的显示和行为的情况下在后台进行数据检索.Ajax 允许在不干扰 Web 应用程序的显示和行为的情况下在后台进行数据检索.由于受到浏览器的限制,该方法不允许 ...
- 步步为营-63-Asp.net-get与post
1 get Get方式将数据发送到服务端,那么会将用户在表单中的数据放置到浏览器的地址栏中发送到服务器 格式:表单元素name属性的值=用户输入的值 请求地址:http://localhost:594 ...
- 2018-2019 2 20165203 《网络对抗技术》 Exp2 后门原理与实践
2018-2019 2 20165203 <网络对抗技术> Exp2 后门原理与实践 实验内容 1.使用netcat获取主机操作Shell,cron启动 (0.5分) 2.使用socat获 ...