今天,我们介绍机器学习里非常常用的一个概念,KL 散度,这是一个用来衡量两个概率分布的相似性的一个度量指标。我们知道,现实世界里的任何观察都可以看成表示成信息和数据,一般来说,我们无法获取数据的总体,我们只能拿到数据的部分样本,根据数据的部分样本,我们会对数据的整体做一个近似的估计,而数据整体本身有一个真实的分布(我们可能永远无法知道),那么近似估计的概率分布和数据整体真实的概率分布的相似度,或者说差异程度,可以用 KL 散度来表示。

KL 散度,最早是从信息论里演化而来的,所以在介绍 KL 散度之前,我们要先介绍一下信息熵。信息熵的定义如下:

H=−∑i=1Np(xi)log⁡p(xi)" role="presentation">H=−∑i=1Np(xi)logp(xi)H=−∑i=1Np(xi)log⁡p(xi)

p(xi)" role="presentation" style="position: relative;">p(xi)p(xi) 表示事件 xi" role="presentation" style="position: relative;">xixi 发生的概率,信息熵其实反映的就是要表示一个概率分布需要的平均信息量。

在信息熵的基础上,我们定义 KL 散度为:

DKL(p||q)=∑i=1Np(xi)⋅(log⁡p(xi)−log⁡(q(xi))" role="presentation">DKL(p||q)=∑i=1Np(xi)⋅(logp(xi)−log(q(xi))DKL(p||q)=∑i=1Np(xi)⋅(log⁡p(xi)−log⁡(q(xi))

或者表示成下面这种形式:

DKL(p||q)=∑i=1Np(xi)⋅log⁡p(xi)q(xi)" role="presentation">DKL(p||q)=∑i=1Np(xi)⋅logp(xi)q(xi)DKL(p||q)=∑i=1Np(xi)⋅log⁡p(xi)q(xi)

DKL(p||q)" role="presentation" style="position: relative;">DKL(p||q)DKL(p||q) 表示的就是概率 q" role="presentation" style="position: relative;">qq 与概率 p" role="presentation" style="position: relative;">pp 之间的差异,很显然,散度越小,说明 概率 q" role="presentation" style="position: relative;">qq 与概率 p" role="presentation" style="position: relative;">pp 之间越接近,那么估计的概率分布于真实的概率分布也就越接近。

KL 散度可以帮助我们选择最优的参数,比如 p(x)" role="presentation" style="position: relative;">p(x)p(x) 是我们需要估计的一个未知的分布,我们无法直接得知 p(x)" role="presentation" style="position: relative;">p(x)p(x) 的分布,不过我们可以建立一个分布 q(x|θ)" role="presentation" style="position: relative;">q(x|θ)q(x|θ) 去估计 p(x)" role="presentation" style="position: relative;">p(x)p(x),为了确定参数 θ" role="presentation" style="position: relative;">θθ,虽然我们无法得知 p(x)" role="presentation" style="position: relative;">p(x)p(x) 的真实分布,但可以利用采样的方法,从 p(x)" role="presentation" style="position: relative;">p(x)p(x) 中采样 N" role="presentation" style="position: relative;">NN 个样本,构建如下的目标函数:

DKL(p||q)=∑i=1N{log⁡p(xi)−log⁡q(xi|θ)}" role="presentation">DKL(p||q)=∑i=1N{logp(xi)−logq(xi|θ)}DKL(p||q)=∑i=1N{log⁡p(xi)−log⁡q(xi|θ)}

因为我们要预估的是参数 θ" role="presentation" style="position: relative;">θθ,上面的第一项 log⁡p(xi)" role="presentation" style="position: relative;">logp(xi)log⁡p(xi) 与参数 θ" role="presentation" style="position: relative;">θθ 无关,所以我们要优化的其实是 −log⁡q(xi|θ)" role="presentation" style="position: relative;">−logq(xi|θ)−log⁡q(xi|θ),而这个就是我们熟悉的最大似然估计。

机器学习:Kullback-Leibler Divergence (KL 散度)的更多相关文章

  1. paper 23 :Kullback–Leibler divergence KL散度(2)

    Kullback–Leibler divergence KL散度 In probability theory and information theory, the Kullback–Leibler ...

  2. KL散度(Kullback–Leibler divergence)

    KL散度是度量两个分布之间差异的函数.在各种变分方法中,都有它的身影. 转自:https://zhuanlan.zhihu.com/p/22464760 一维高斯分布的KL散度 多维高斯分布的KL散度 ...

  3. 交叉熵cross entropy和相对熵(kl散度)

    交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relativ ...

  4. 【原】浅谈KL散度(相对熵)在用户画像中的应用

    最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Ku ...

  5. 浅谈KL散度

    一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence) ...

  6. ELBO 与 KL散度

    浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information dive ...

  7. KL散度的理解(GAN网络的优化)

    原文地址Count Bayesie 这篇文章是博客Count Bayesie上的文章Kullback-Leibler Divergence Explained 的学习笔记,原文对 KL散度 的概念诠释 ...

  8. KL散度与JS散度

    1.KL散度 KL散度( Kullback–Leibler divergence)是描述两个概率分布P和Q差异的一种测度.对于两个概率分布P.Q,二者越相似,KL散度越小. KL散度的性质:P表示真实 ...

  9. KL散度非负性证明

    1 KL散度 KL散度(Kullback–Leibler divergence) 定义如下: $D_{K L}=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \t ...

  10. 两个多维高斯分布之间的KL散度推导

    在深度学习中,我们通常对模型进行抽样并计算与真实样本之间的损失,来估计模型分布与真实分布之间的差异.并且损失可以定义得很简单,比如二范数即可.但是对于已知参数的两个确定分布之间的差异,我们就要通过推导 ...

随机推荐

  1. MongoDB 教程(二):MongoDB 简介

    概述: MongoDB 旨在为WEB应用提供可扩展.高性能的数据存储解决方案. MongoDB 将数据存储为一个文档,数据结构由键值(key=>value)对组成. MongoDB 文档类似于 ...

  2. Hadoop 2.7.3 完全分布式维护-部署篇

    测试环境如下  IP       host JDK linux hadop role 172.16.101.55 sht-sgmhadoopnn-01 1.8.0_111 CentOS release ...

  3. Node.js + Express 接口请求(GET、POST、PUT)事例

    路由 路由是指应用程序的端点(URI)如何响应客户端请求.有关路由的介绍,请参阅基本路由. 您可以使用Express app对象的方法定义路由,这些方法对应于HTTP方法; 例如,app.get()处 ...

  4. weblogic补丁安装失败(Patch B25A is mutually exclusive and cannot coexist with patch(es): UIAL)

    由于曝出漏洞(CVE-2017-3248)需要将weblogic补丁更新至B25A,但是出现报错.如下: Conflict(s) detected - resolve conflict conditi ...

  5. MP3文件结构解析(超详细)

    转自:http://blog.csdn.net/u010650845/article/details/53520426 MP3文件结构解析(超详细) 1. MP3文件结构解析 1.1. 概述 1.1. ...

  6. python3- __slots__

    Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性: class Student(object): __slots__ = ('name' ...

  7. 微信小程序自动定位,通过百度地图根据经纬度获取该地点所在城市信息

    微信小程序获得经纬度 var that = this wx.getLocation({ type: 'wgs84', success(res) { console.log(res) that.setD ...

  8. 把旧系统迁移到.Net Core 2.0 日记 (17) --多租户和SoftDelete

    在EF Core 2.0版本中出现了全局过滤新特性即HasQueryFilter,它出现的意义在哪里?能够解决什么问题呢? 通过HasQueryFilter方法来创建过滤器能够允许我们对访问特定数据库 ...

  9. Linux第六周作业

    一 实验过程 1 先进入LinuxKernel环境下,更新menu代码到最新版,用到的命令为rm menu -rf //强制删除当前menu,git clone http://git.shiyanlo ...

  10. unity中实现三个Logo图片进行3秒钟的若隐若现后互相切换Logo图片

    private List<Sprite> storeTexture; public void Start() { storeTexture = new List<Sprite> ...