题意:求本质不同的回文子串的和

题解:先构造pam,然后根据pam的原理(ch表示在该节点表示的回文串两侧加上该字符)对于每个节点维护一个表示该节点字符串的值,加起来即可

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define LL long long
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=2000000+10,maxn=1000000+10,inf=0x3f3f3f3f; struct PAM{
int ch[N][10],fail[N],cnt[N],num[N],len[N],s[N],le[N];
ll val[N],ans[N];
int last,n,p;
int newnode(int w,int c)
{
for(int i=0;i<10;i++)ch[p][i] = 0;
cnt[p] = num[p] = 0;
len[p] = w;val[p]=c;
return p++;
}
void init()
{
p = last = n = 0;
newnode(0,0);
newnode(-1,0);
s[n] = -1;
fail[0] = 1;
}
int getfail(int x)
{
while(s[n-len[x]-1] != s[n]) x = fail[x];
return x;
}
void add(int c)
{
s[++n] = c;
int cur = getfail(last);
if(!ch[cur][c]){
int now = newnode(len[cur]+2,c);
fail[now] = ch[getfail(fail[cur])][c];
ch[cur][c] = now;
num[now] = num[fail[now]] + 1;
}
last = ch[cur][c];
cnt[last]++;
}
void cal()
{
ll pp=0;
for(int i=0;i<p;i++)
{
for(int j=0;j<10;j++)if(ch[i][j])
{
if(ans[i])ans[ch[i][j]]=(ans[i]*10%mod+val[ch[i][j]]+qp(10,1+le[i])*val[ch[i][j]]%mod)%mod,
le[ch[i][j]]=le[i]+2;
else
{
if(len[i]&1)ans[ch[i][j]]=val[ch[i][j]],le[ch[i][j]]=1;
else ans[ch[i][j]]=(val[ch[i][j]]+val[ch[i][j]]*10%mod)%mod,le[ch[i][j]]=2;
}
}
pp+=ans[i];if(pp>=mod)pp-=mod;
}
printf("%lld\n",pp);
}
}pam;
char s[N];
int main()
{
pam.init();
scanf("%s",s);
int n=strlen(s);
for(int i=0;i<n;i++)pam.add(s[i]-'0');
pam.cal();
return 0;
}
/******************** ********************/

ACM-ICPC 2018 南京赛区网络预赛Skr的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛(12/12)

    ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem 计算\(\sum_{i=1}^{n-1}i\cdot i!(MOD\ n)\) \(\sum_{i ...

  2. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  3. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  4. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  5. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  6. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  7. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  8. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

  9. ACM-ICPC 2018 南京赛区网络预赛

    轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K   Alice, a student of g ...

随机推荐

  1. JQ插入节点方法

    1.append()  appendTo()  prepend() prependTo() 2. before() insertBefore() after() insertAfter()

  2. K8S笔记

    K8S 集群结构图 一些名词: etcd etcd保存了整个集群的状态:用于持久化存储集群中所有的资源对象,如Node.Service.Pod.RC.Namespace等:API Server提供了操 ...

  3. 【使用指南】WijmoJS 前端开发工具包

    为方便广大前端开发人员更好的使用 WijmoJS 前端开发工具包,葡萄城专门推出了 WijmoJS 使用指南,该指南详细地介绍了如何把 WijmoJS 各种强大的功能应用到您自己的 Web 项目中,助 ...

  4. CCF计算机网络会议日期

    SenSys: November 5-8 2017, Deadline: April 3, 2017 CoNEXT: December 12-15 2017, Deadline: June 12, 2 ...

  5. 4、python内置类型(0529)

    支持运算:索引,切片,min(), max(), len()等 支持操作:对象的自有的方法 对字符串操作的内置方法获取:str.     //敲tab键补全 获取某个内建命令的属性和方法列表:dir( ...

  6. 2017-2018-2 20165306 实验三《敏捷开发与XP实践》实验报告

    实验三<敏捷开发与XP实践>实验报告 实验报告封面 实验内容 XP基础 XP核心实践 相关工具 实验步骤 (一) 敏捷开发与XP实践-1 实验要求: 参考 代码规范 安装alibaba 插 ...

  7. HDU 5459 Jesus Is Here(递推)

    http://acm.hdu.edu.cn/showproblem.php?pid=5459 题意: S(1) = c,S(2) = ff, S(3) = cff,之后S(i) = S(i-1)+S( ...

  8. 51nod 1615 跳跃的杰克

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1615 题意: 思路:一开始是觉得一旦超过了终点,中间某个地方往相反地方跳 ...

  9. Git入门看这一篇就够了! (转)

    Git 的三种状态 Git 有三种状态,你的文件可能处于其中之一: 已提交(committed):数据已经安全的保存在本地数据库中. 已修改(modified):已修改表示修改了文件,但还没保存到数据 ...

  10. maven . mac

    编辑文件 .bash_profile 1.vim .bash_profile 输入: M2_HOME=/Users/lizhimin/Documents/maven/apache-maven-3.3. ...