转载注明出处:http://www.cnblogs.com/yjiyjige/p/3263858.html

什么是KMP算法:

KMP是三位大牛:D.E.Knuth、J.H.Morris和V.R.Pratt同时发现的。其中第一位就是《计算机程序设计艺术》的作者!!

KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题。说简单点就是我们平时常说的关键字搜索。模式串就是关键字(接下来称它为P),如果它在一个主串(接下来称为T)中出现,就返回它的具体位置,否则返回-1(常用手段)。

首先,对于这个问题有一个很单纯的想法:从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位。这有什么难的?

我们可以这样初始化:

之后我们只需要比较i指针指向的字符和j指针指向的字符是否一致。如果一致就都向后移动,如果不一致,如下图:

A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,然后又重新开始这个步骤:

基于这个想法我们可以得到以下的程序:

/**

 * 暴力破解法

 * @param ts 主串

 * @param ps 模式串

 * @return 如果找到,返回在主串中第一个字符出现的下标,否则为-1

 */

public static int bf(String ts, String ps) {

    char[] t = ts.toCharArray();

    char[] p = ps.toCharArray();

    int i = 0; // 主串的位置

    int j = 0; // 模式串的位置

    while (i < t.length && j < p.length) {

       if (t[i] == p[j]) { // 当两个字符相同,就比较下一个

           i++;

           j++;

       } else {

           i = i - j + 1; // 一旦不匹配,i后退

           j = 0; // j归0

       }

    }

    if (j == p.length) {

       return i - j;

    } else {

       return -1;

    }

}

上面的程序是没有问题的,但不够好!(想起我高中时候数字老师的一句话:我不能说你错,只能说你不对~~~)

如果是人为来寻找的话,肯定不会再把i移动回第1位,因为主串匹配失败的位置前面除了第一个A之外再也没有A了,我们为什么能知道主串前面只有一个A?因为我们已经知道前面三个字符都是匹配的!(这很重要)。移动过去肯定也是不匹配的!有一个想法,i可以不动,我们只需要移动j即可,如下图:

上面的这种情况还是比较理想的情况,我们最多也就多比较了再次。但假如是在主串“SSSSSSSSSSSSSA”中查找“SSSSB”,比较到最后一个才知道不匹配,然后i回溯,这个的效率是显然是最低的。

大牛们是无法忍受“暴力破解”这种低效的手段的,于是他们三个研究出了KMP算法。其思想就如同我们上边所看到的一样:“利用已经部分匹配这个有效信息,保持i指针不回溯,通过修改j指针,让模式串尽量地移动到有效的位置。”

所以,整个KMP的重点就在于当某一个字符与主串不匹配时,我们应该知道j指针要移动到哪?

接下来我们自己来发现j的移动规律:

如图:C和D不匹配了,我们要把j移动到哪?显然是第1位。为什么?因为前面有一个A相同啊:

如下图也是一样的情况:

可以把j指针移动到第2位,因为前面有两个字母是一样的:

至此我们可以大概看出一点端倪,当匹配失败时,j要移动的下一个位置k。存在着这样的性质:最前面的k个字符和j之前的最后k个字符是一样的。

如果用数学公式来表示是这样的

P[0 ~ k-1] == P[j-k ~ j-1]

这个相当重要,如果觉得不好记的话,可以通过下图来理解:

弄明白了这个就应该可能明白为什么可以直接将j移动到k位置了。

因为:

当T[i] != P[j]时

有T[i-j ~ i-1] == P[0 ~ j-1]

由P[0 ~ k-1] == P[j-k ~ j-1]

必然:T[i-k ~ i-1] == P[0 ~ k-1]

公式很无聊,能看明白就行了,不需要记住。

这一段只是为了证明我们为什么可以直接将j移动到k而无须再比较前面的k个字符。

好,接下来就是重点了,怎么求这个(这些)k呢?因为在P的每一个位置都可能发生不匹配,也就是说我们要计算每一个位置j对应的k,所以用一个数组next来保存,next[j] = k,表示当T[i] != P[j]时,j指针的下一个位置。

很多教材或博文在这个地方都是讲得比较含糊或是根本就一笔带过,甚至就是贴一段代码上来,为什么是这样求?怎么可以这样求?根本就没有说清楚。而这里恰恰是整个算法最关键的地方。

public static int[] getNext(String ps)
{ char[] p = ps.toCharArray(); int[] next = new int[p.length]; next[0] = -1; int j = 0; int k = -1; while (j < p.length - 1)
{ if (k == -1 || p[j] == p[k])
{ next[++j] = ++k; }
else
{ k = next[k]; } } return next; }

是很简洁。可是真的很让人摸不到头脑,它这样计算的依据到底是什么?

好,先把这个放一边,我们自己来推导思路,现在要始终记住一点,next[j]的值(也就是k)表示,当P[j] != T[i]时,j指针的下一步移动位置。

先来看第一个:当j为0时,如果这时候不匹配,怎么办?

像上图这种情况,j已经在最左边了,不可能再移动了,这时候要应该是i指针后移。所以在代码中才会有next[0] = -1;这个初始化。

如果是当j为1的时候呢?

显然,j指针一定是后移到0位置的。因为它前面也就只有这一个位置了~~~

下面这个是最重要的,请看如下图:

 

请仔细对比这两个图。

我们发现一个规律:

当P[k] == P[j]时,

有next[j+1] == next[j] + 1

其实这个是可以证明的:

因为在P[j]之前已经有P[0 ~ k-1] == p[j-k ~ j-1]。(next[j] == k)

这时候现有P[k] == P[j],我们是不是可以得到P[0 ~ k-1] + P[k] == p[j-k ~ j-1] + P[j]。

即:P[0 ~ k] == P[j-k ~ j],即next[j+1] == k + 1 == next[j] + 1。

这里的公式不是很好懂,还是看图会容易理解些。

那如果P[k] != P[j]呢?比如下图所示:

像这种情况,如果你从代码上看应该是这一句:k = next[k];为什么是这样子?你看下面应该就明白了。

现在你应该知道为什么要k = next[k]了吧!像上边的例子,我们已经不可能找到[ A,B,A,B ]这个最长的后缀串了,但我们还是可能找到[ A,B ]、[ B ]这样的前缀串的。所以这个过程像不像在定位[ A,B,A,C ]这个串,当C和主串不一样了(也就是k位置不一样了),那当然是把指针移动到next[k]啦。

有了next数组之后就一切好办了,我们可以动手写KMP算法了:

public static int KMP(String ts, String ps)
{ char[] t = ts.toCharArray(); char[] p = ps.toCharArray(); int i = 0; // 主串的位置 int j = 0; // 模式串的位置 int[] next = getNext(ps); while (i < t.length && j < p.length)
{ if (j == -1 || t[i] == p[j]) // 当j为-1时,要移动的是i,当然j也要归0
{ i++; j++; }
else
{ // i不需要回溯了 // i = i - j + 1; j = next[j]; // j回到指定位置 } } if (j == p.length)
{ return i - j; }
else
{ return -1; } }

和暴力破解相比,就改动了4个地方。其中最主要的一点就是,i不需要回溯了。

最后,来看一下上边的算法存在的缺陷。来看第一个例子:

显然,当我们上边的算法得到的next数组应该是[ -1,0,0,1 ]

所以下一步我们应该是把j移动到第1个元素咯:

不难发现,这一步是完全没有意义的。因为后面的B已经不匹配了,那前面的B也一定是不匹配的,同样的情况其实还发生在第2个元素A上。

显然,发生问题的原因在于P[j] == P[next[j]]。

所以我们也只需要添加一个判断条件即可:

public static int[] getNext(String ps) {

    char[] p = ps.toCharArray();

    int[] next = new int[p.length];

    next[0] = -1;

    int j = 0;

    int k = -1;

    while (j < p.length - 1) {

       if (k == -1 || p[j] == p[k]) {

           if (p[++j] == p[++k]) { // 当两个字符相等时要跳过

              next[j] = next[k];

           } else {

              next[j] = k;

           }

       } else {

           k = next[k];

       }

    }

    return next;

}

好了,至此。KMP算法也结束了。

详解KMP算法的更多相关文章

  1. (原创)详解KMP算法

    KMP算法应该是每一本<数据结构>书都会讲的,算是知名度最高的算法之一了,但很可惜,我大二那年压根就没看懂过~~~ 之后也在很多地方也都经常看到讲解KMP算法的文章,看久了好像也知道是怎么 ...

  2. 详解KMP算法【转】

    本文转载自:http://www.cnblogs.com/yjiyjige/p/3263858.html KMP算法应该是每一本<数据结构>书都会讲的,算是知名度最高的算法之一了,但很可惜 ...

  3. 【转载】详解KMP算法

    网址:https://www.cnblogs.com/yjiyjige/p/3263858.html

  4. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  5. SVD在推荐系统中的应用详解以及算法推导

    SVD在推荐系统中的应用详解以及算法推导     出处http://blog.csdn.net/zhongkejingwang/article/details/43083603 前面文章SVD原理及推 ...

  6. Java虚拟机详解04----GC算法和种类【重要】

    [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...

  7. Java虚拟机详解04----GC算法和种类

    [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...

  8. 详讲KMP算法

    两个字符串: 模式串:ababcaba 文本串:ababcabcbababcabacaba KMP算法作用:快速在文本串中匹配到模式串 如果是穷举法的方式: 大家有发现,这样比效率很低的. 所以就需要 ...

  9. 详解zkw算法解决最小费用流问题

    网络流的一些基本概念 很多同学建立过网络流模型做题目, 也学过了各种算法, 但是对于基本的概念反而说不清楚. 虽然不同的模型在具体叫法上可能不相同, 但是不同叫法对应的思想是一致的. 下面的讨论力求规 ...

随机推荐

  1. linux:ACL权限

    ACL权限是为了防止权限不够用的情况,一般的权限有所有者.所属组.其他人这三种,当这三种满足不了我们的需求的时候就可以使用ACL权限: 比如:一个网络老师,给一个班的学员上课,他在linux的根目录下 ...

  2. Java5、Java6、Java7的新特性

    Java5 Java 5添加了8个语言特性:泛型,类型安全枚举,注解,自动装箱和拆箱,增强的循环,静态导入,可变参数,协变返回类型. 1.泛型 Generics: 引用泛型之后,允许指定集合里元素的类 ...

  3. CocoaPods看的三篇文章

    http://www.bubuko.com/infodetail-425274.html//有图片 http://www.cnblogs.com/jys509/p/4839803.html http: ...

  4. 转:python类型转换、数值操作

    类型转换   1 函数                                    描述 2 int(x [,base ])                      将x转换为一个整数 3 ...

  5. Ruby操作VBA的注意事项和技巧(2):宏里调用和控制窗体以及窗体上的控件、不同workbook之间的宏互相调用

    4.宏里调用并控制窗体以及窗体上的各种控件 1 Sub Criterion_Check() 2 If Workbooks.count = 0 Then '如果当前没有打开的工作薄的话需要发出警告 3 ...

  6. android中的命令安装与卸载

    软件的安装: adb install apk的保存地址 卸载软件: adb uninstall  package名

  7. URAL 1146 Maximum Sum(DP)

    Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the large ...

  8. HDU 2366 Space(二分计数)

    Problem Description During a programming contest, teams cannot sit close to each other, because then ...

  9. Oracle存储过程总结

    1.存储过程结构 1.1 第一个存储过程 create or replace procedure proc1( para1 varchar2, para2 out varchar2, para3 in ...

  10. 深入了解webservice_概念总结

    最近公司需要对java web端的第三方接口进行测试,使用WebService+TestNG实现,TsetNg是常用的自动化测试框架,这就不介绍了. WebService是一种跨编程语言和跨操作系统平 ...