图论填个小坑。以前就一直在想,无向图有最小生成树,那么有向图是不是也有最小生成树呢,想不到还真的有,叫做最小树形图,网上的介绍有很多,感觉下面这个博客介绍的靠谱点:

http://www.cnblogs.com/vongang/archive/2012/07/18/2596851.html

所以下面的代码也是抄上面的模板的。里面还给出了不定根情况下的最小树形图的做法,新增一个虚拟根,连向其它所有点的费用是总费用+1,然后跑一次算法就可以了,这样可以保证虚拟根一定连出去某个顶点,而且不可能连两个,最后跑出来把多的费用减掉就可以了。感觉想法挺神奇的。

#pragma warning(disable:4996)
#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std; #define maxn 120
#define maxm 12000 int n, m; struct Edge{
int u, v;
double w;
Edge(int ui, int vi, double wi) :u(ui), v(vi), w(wi){}
Edge(){}
}; vector<Edge> E; double x[maxn], y[maxn]; double dist(int i, int j){
return sqrt((x[i] - x[j])*(x[i] - x[j]) + (y[i] - y[j])*(y[i] - y[j]));
} double in[maxn]; // minimum pre edge weight
int pre[maxn]; // pre vertex
int vis[maxn]; // vis array
int id[maxn]; // mark down the id
int nv; // nv is the number of vertex after shrinking double directed_mst(int root)
{
double ret = 0; int nv = n;
while (1){
for (int i = 0; i < nv; ++i) in[i] = 1e10;
for (int i = 0; i < m; ++i){
int u = E[i].u, v = E[i].v;
if (E[i].w < in[v] && u != v){
in[v] = E[i].w;
pre[v] = u;
}
}
// found not connected means impossible
for (int i = 0; i < nv; ++i){
if (i == root) continue;
if (in[i]>1e9) return -1;
}
int cnt = 0;
memset(id, -1, sizeof(id));
memset(vis, -1, sizeof(vis));
in[root] = 0; for (int i = 0; i < nv; ++i){
ret += in[i];
int v = i; while (vis[v] != i&&id[v] == -1 && v != root){
vis[v] = i;
v = pre[v];
}
// v!=root means we find a circle,id[v]==-1 guarantee that it's not shrinked.
if (v != root&&id[v] == -1){
for (int u = pre[v]; u != v; u = pre[u]){
id[u] = cnt;
}
id[v] = cnt++;
}
}
if (cnt == 0) break;
for (int i = 0; i < nv; ++i){
if (id[i] == -1) id[i] = cnt++;
}
// change the cost of edge for each (u,v,w)->(u,v,w-in[v])
for (int i = 0; i < m; ++i){
int v = E[i].v;
E[i].u = id[E[i].u];
E[i].v = id[E[i].v];
if (E[i].u != E[i].v) E[i].w -= in[v];
}
// mark down the new root
root = id[root];
// mark down the new vertex number
nv = cnt;
}
return ret;
} int main()
{
while (cin >> n >> m){
E.clear();
for (int i = 0; i < n; ++i){
scanf("%lf%lf", x + i, y + i);
}
int ui, vi;
for (int i = 0; i < m; ++i){
scanf("%d%d", &ui, &vi);
--ui; --vi;
if (ui != vi) E.push_back(Edge(ui, vi, dist(ui,vi)));
}
m = E.size();
double ans = directed_mst(0);
if (ans < 0) puts("poor snoopy");
else printf("%.2f\n", ans);
}
return 0;
}

POJ3164 Command Network(最小树形图)的更多相关文章

  1. POJ3164 Command Network —— 最小树形图

    题目链接:https://vjudge.net/problem/POJ-3164 Command Network Time Limit: 1000MS   Memory Limit: 131072K ...

  2. POJ3436 Command Network [最小树形图]

    POJ3436 Command Network 最小树形图裸题 傻逼poj回我青春 wa wa wa 的原因竟然是需要%.2f而不是.2lf 我还有英语作业音乐作业写不完了啊啊啊啊啊啊啊啊啊 #inc ...

  3. POJ 3164 Command Network 最小树形图

    题目链接: 题目 Command Network Time Limit: 1000MS Memory Limit: 131072K 问题描述 After a long lasting war on w ...

  4. POJ 3164 Command Network 最小树形图模板

    最小树形图求的是有向图的最小生成树,跟无向图求最小生成树有很大的区别. 步骤大致如下: 1.求除了根节点以外每个节点的最小入边,记录前驱 2.判断除了根节点,是否每个节点都有入边,如果存在没有入边的点 ...

  5. POJ 3164 Command Network 最小树形图 朱刘算法

    =============== 分割线之下摘自Sasuke_SCUT的blog============= 最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T, ...

  6. POJ - 3164-Command Network 最小树形图——朱刘算法

    POJ - 3164 题意: 一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 题目就是求这个最小的树形图. 参考资料:https://blog.csdn.net/ ...

  7. POJ 3164 Command Network ( 最小树形图 朱刘算法)

    题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...

  8. POJ 3164——Command Network——————【最小树形图、固定根】

    Command Network Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 15080   Accepted: 4331 ...

  9. POJ 3164 Command Network (最小树形图)

    [题目链接]http://poj.org/problem?id=3164 [解题思路]百度百科:最小树形图 ]里面有详细的解释,而Notonlysucess有精简的模板,下文有对其模板的一点解释,前提 ...

随机推荐

  1. python的http请求应用--每日签到

    写点python吧,python其实是个很好用的工具,作为浇水语言,跟其他语言联系也很紧密,想用什么包直接import,导入ctypes调用底层函数库,导入web相关的包可以轻松写爬虫,今天我们写的跟 ...

  2. 我的WPF控件库——KAN.WPF.XCtrl(141105)

    自己开发的WPF控件库,只是初版,有扩展的Button,TextBox,Window.详细参见前几篇博文. WPF自定义控件(一)——Button:http://www.cnblogs.com/Qin ...

  3. DB2表结构DDL脚本导出

    db2look是导出DDL语句脚本的命令,以下是对db2look的一个简单介绍. 语法:db2look -d <数据库名> -e -t <表名> -o <文件名>. ...

  4. 源码解析之setContentView

    分享一下我以前学习时做到PPT中的一部分. 不难看出其实设置布局是由PhoneWindow来完成的. 然而我们要记住DecorView: 包括:状态栏,标题栏,内容 phoneWindow -> ...

  5. android Init 相关分析

    Init.c主要工作 1. 初始化属性(包括建立/dev./proc等目录.初始化属性.log.执行init.rc等初始化文件中的action等). 2. 解析配置文件的命令(主要是init.rc文件 ...

  6. hdu 1023 Train Problem II

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1212 Train Problem II Description As we all know the ...

  7. 2015 年开源前端框架盘点 TOP 20

    1.名称:Bootstrap 类别/语言:HTML.CSS.JavaScript 创建者: Twitter 人气:在Github上有91007 stars 描述:主流框架中毋庸置疑的老大,Bootst ...

  8. Get 和 Post方法的登录

    1. Get & Post 1> Get请求直接从服务器拿数据 性能好 效率高 在地址栏会显示所有的参数,从直观上安全性不高 由于Get不提交数据给服务器,因此实际的安全性高 实际应用: ...

  9. iOS学习之UITabBarController

    一.标签视图控制器——UITabBarController 1.UITabBarController的继承关系: @interface UITabBarController : UIViewContr ...

  10. Travis-CI的进一步使用

    今天主要对.travis.yml文件和makefile进行进一步的了解: 1.在.travis.yml文件中添加了给linux系统中安装了cppunit库的语句,使能够持续集成写过的单元测试的代码.主 ...