POJ3164 Command Network(最小树形图)
图论填个小坑。以前就一直在想,无向图有最小生成树,那么有向图是不是也有最小生成树呢,想不到还真的有,叫做最小树形图,网上的介绍有很多,感觉下面这个博客介绍的靠谱点:
http://www.cnblogs.com/vongang/archive/2012/07/18/2596851.html
所以下面的代码也是抄上面的模板的。里面还给出了不定根情况下的最小树形图的做法,新增一个虚拟根,连向其它所有点的费用是总费用+1,然后跑一次算法就可以了,这样可以保证虚拟根一定连出去某个顶点,而且不可能连两个,最后跑出来把多的费用减掉就可以了。感觉想法挺神奇的。
#pragma warning(disable:4996)
#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std; #define maxn 120
#define maxm 12000 int n, m; struct Edge{
int u, v;
double w;
Edge(int ui, int vi, double wi) :u(ui), v(vi), w(wi){}
Edge(){}
}; vector<Edge> E; double x[maxn], y[maxn]; double dist(int i, int j){
return sqrt((x[i] - x[j])*(x[i] - x[j]) + (y[i] - y[j])*(y[i] - y[j]));
} double in[maxn]; // minimum pre edge weight
int pre[maxn]; // pre vertex
int vis[maxn]; // vis array
int id[maxn]; // mark down the id
int nv; // nv is the number of vertex after shrinking double directed_mst(int root)
{
double ret = 0; int nv = n;
while (1){
for (int i = 0; i < nv; ++i) in[i] = 1e10;
for (int i = 0; i < m; ++i){
int u = E[i].u, v = E[i].v;
if (E[i].w < in[v] && u != v){
in[v] = E[i].w;
pre[v] = u;
}
}
// found not connected means impossible
for (int i = 0; i < nv; ++i){
if (i == root) continue;
if (in[i]>1e9) return -1;
}
int cnt = 0;
memset(id, -1, sizeof(id));
memset(vis, -1, sizeof(vis));
in[root] = 0; for (int i = 0; i < nv; ++i){
ret += in[i];
int v = i; while (vis[v] != i&&id[v] == -1 && v != root){
vis[v] = i;
v = pre[v];
}
// v!=root means we find a circle,id[v]==-1 guarantee that it's not shrinked.
if (v != root&&id[v] == -1){
for (int u = pre[v]; u != v; u = pre[u]){
id[u] = cnt;
}
id[v] = cnt++;
}
}
if (cnt == 0) break;
for (int i = 0; i < nv; ++i){
if (id[i] == -1) id[i] = cnt++;
}
// change the cost of edge for each (u,v,w)->(u,v,w-in[v])
for (int i = 0; i < m; ++i){
int v = E[i].v;
E[i].u = id[E[i].u];
E[i].v = id[E[i].v];
if (E[i].u != E[i].v) E[i].w -= in[v];
}
// mark down the new root
root = id[root];
// mark down the new vertex number
nv = cnt;
}
return ret;
} int main()
{
while (cin >> n >> m){
E.clear();
for (int i = 0; i < n; ++i){
scanf("%lf%lf", x + i, y + i);
}
int ui, vi;
for (int i = 0; i < m; ++i){
scanf("%d%d", &ui, &vi);
--ui; --vi;
if (ui != vi) E.push_back(Edge(ui, vi, dist(ui,vi)));
}
m = E.size();
double ans = directed_mst(0);
if (ans < 0) puts("poor snoopy");
else printf("%.2f\n", ans);
}
return 0;
}
POJ3164 Command Network(最小树形图)的更多相关文章
- POJ3164 Command Network —— 最小树形图
题目链接:https://vjudge.net/problem/POJ-3164 Command Network Time Limit: 1000MS Memory Limit: 131072K ...
- POJ3436 Command Network [最小树形图]
POJ3436 Command Network 最小树形图裸题 傻逼poj回我青春 wa wa wa 的原因竟然是需要%.2f而不是.2lf 我还有英语作业音乐作业写不完了啊啊啊啊啊啊啊啊啊 #inc ...
- POJ 3164 Command Network 最小树形图
题目链接: 题目 Command Network Time Limit: 1000MS Memory Limit: 131072K 问题描述 After a long lasting war on w ...
- POJ 3164 Command Network 最小树形图模板
最小树形图求的是有向图的最小生成树,跟无向图求最小生成树有很大的区别. 步骤大致如下: 1.求除了根节点以外每个节点的最小入边,记录前驱 2.判断除了根节点,是否每个节点都有入边,如果存在没有入边的点 ...
- POJ 3164 Command Network 最小树形图 朱刘算法
=============== 分割线之下摘自Sasuke_SCUT的blog============= 最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T, ...
- POJ - 3164-Command Network 最小树形图——朱刘算法
POJ - 3164 题意: 一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 题目就是求这个最小的树形图. 参考资料:https://blog.csdn.net/ ...
- POJ 3164 Command Network ( 最小树形图 朱刘算法)
题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...
- POJ 3164——Command Network——————【最小树形图、固定根】
Command Network Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 15080 Accepted: 4331 ...
- POJ 3164 Command Network (最小树形图)
[题目链接]http://poj.org/problem?id=3164 [解题思路]百度百科:最小树形图 ]里面有详细的解释,而Notonlysucess有精简的模板,下文有对其模板的一点解释,前提 ...
随机推荐
- python Django 学习笔记(三)—— 模版的使用
模版基本介绍 模板是一个文本,用于分离文档的表现形式和内容. 模板定义了占位符以及各种用于规范文档该如何显示的各部分基本逻辑(模板标签). 模板通常用于产生HTML,但是Django的模板也能产生任何 ...
- ruby 程序中的文字编码
1,问题 在写一个统计代码行数的脚本时遇到一个问题: 代码: file_name = "code.rb"c = 0File.foreach(file_name) do |x| ne ...
- db2建立表空间
--缓冲池 CREATE BUFFERPOOL EMP_BUF_POOL IMMEDIATE ALL DBPARTITIONNUMS SIZE 250 NUMBLOCKPAGES 0 PAG ...
- Redbean:入门(四) - 反射机制 以及 事务
<?php //引入rb入口文件 include_once 'rb.php'; //定义dsn以及相关的数据 $dsn = 'mysql:host=localhost;dbname=hwibs_ ...
- 数组链表下标指针map list
1.时间复杂度 (1)时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道.但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间 ...
- asp.net mvc 错误路由默认配置
问题描述:默认情况下mvc已经将路由参数设置配置好了,这里就不在讲解,请到园子搜索,有很多这方面相关的文章.这里讲述的是,一个MVC项目中,我们输入一个错误的URL,或者根本不存在的URL,如:htt ...
- Delphi 调试日子 - 莫名其妙的堆溢出
这个是个很有意思的事情,这一个成熟的模板上更改,同样的属性,同样的方法,新的组件在载入过程中就是报错. “Stack overflow” 因为有初始化过程,担心是不是那个地方有问题,由于是在属性赋值过 ...
- Oracle数据文件在open状态被删除的恢复记录
1.查看当前状态: SQL> select status from v$instance; STATUS------------OPEN SQL> show parameter name; ...
- powerdesigner 技巧
1.修改建表脚本生成规则.如果每个表格都有相同的字段,可以如下修改: Database -> Edit Current DBMS 展开 Script -> Object -> Tab ...
- Spring MVC常用的注解类
一.注解类配置 要使用springmvc的注解类,需要在springmvc.xml配置文件中用context:component-scan/扫描:  二.五大重要的注解类 1.RequestMapp ...