图论填个小坑。以前就一直在想,无向图有最小生成树,那么有向图是不是也有最小生成树呢,想不到还真的有,叫做最小树形图,网上的介绍有很多,感觉下面这个博客介绍的靠谱点:

http://www.cnblogs.com/vongang/archive/2012/07/18/2596851.html

所以下面的代码也是抄上面的模板的。里面还给出了不定根情况下的最小树形图的做法,新增一个虚拟根,连向其它所有点的费用是总费用+1,然后跑一次算法就可以了,这样可以保证虚拟根一定连出去某个顶点,而且不可能连两个,最后跑出来把多的费用减掉就可以了。感觉想法挺神奇的。

#pragma warning(disable:4996)
#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std; #define maxn 120
#define maxm 12000 int n, m; struct Edge{
int u, v;
double w;
Edge(int ui, int vi, double wi) :u(ui), v(vi), w(wi){}
Edge(){}
}; vector<Edge> E; double x[maxn], y[maxn]; double dist(int i, int j){
return sqrt((x[i] - x[j])*(x[i] - x[j]) + (y[i] - y[j])*(y[i] - y[j]));
} double in[maxn]; // minimum pre edge weight
int pre[maxn]; // pre vertex
int vis[maxn]; // vis array
int id[maxn]; // mark down the id
int nv; // nv is the number of vertex after shrinking double directed_mst(int root)
{
double ret = 0; int nv = n;
while (1){
for (int i = 0; i < nv; ++i) in[i] = 1e10;
for (int i = 0; i < m; ++i){
int u = E[i].u, v = E[i].v;
if (E[i].w < in[v] && u != v){
in[v] = E[i].w;
pre[v] = u;
}
}
// found not connected means impossible
for (int i = 0; i < nv; ++i){
if (i == root) continue;
if (in[i]>1e9) return -1;
}
int cnt = 0;
memset(id, -1, sizeof(id));
memset(vis, -1, sizeof(vis));
in[root] = 0; for (int i = 0; i < nv; ++i){
ret += in[i];
int v = i; while (vis[v] != i&&id[v] == -1 && v != root){
vis[v] = i;
v = pre[v];
}
// v!=root means we find a circle,id[v]==-1 guarantee that it's not shrinked.
if (v != root&&id[v] == -1){
for (int u = pre[v]; u != v; u = pre[u]){
id[u] = cnt;
}
id[v] = cnt++;
}
}
if (cnt == 0) break;
for (int i = 0; i < nv; ++i){
if (id[i] == -1) id[i] = cnt++;
}
// change the cost of edge for each (u,v,w)->(u,v,w-in[v])
for (int i = 0; i < m; ++i){
int v = E[i].v;
E[i].u = id[E[i].u];
E[i].v = id[E[i].v];
if (E[i].u != E[i].v) E[i].w -= in[v];
}
// mark down the new root
root = id[root];
// mark down the new vertex number
nv = cnt;
}
return ret;
} int main()
{
while (cin >> n >> m){
E.clear();
for (int i = 0; i < n; ++i){
scanf("%lf%lf", x + i, y + i);
}
int ui, vi;
for (int i = 0; i < m; ++i){
scanf("%d%d", &ui, &vi);
--ui; --vi;
if (ui != vi) E.push_back(Edge(ui, vi, dist(ui,vi)));
}
m = E.size();
double ans = directed_mst(0);
if (ans < 0) puts("poor snoopy");
else printf("%.2f\n", ans);
}
return 0;
}

POJ3164 Command Network(最小树形图)的更多相关文章

  1. POJ3164 Command Network —— 最小树形图

    题目链接:https://vjudge.net/problem/POJ-3164 Command Network Time Limit: 1000MS   Memory Limit: 131072K ...

  2. POJ3436 Command Network [最小树形图]

    POJ3436 Command Network 最小树形图裸题 傻逼poj回我青春 wa wa wa 的原因竟然是需要%.2f而不是.2lf 我还有英语作业音乐作业写不完了啊啊啊啊啊啊啊啊啊 #inc ...

  3. POJ 3164 Command Network 最小树形图

    题目链接: 题目 Command Network Time Limit: 1000MS Memory Limit: 131072K 问题描述 After a long lasting war on w ...

  4. POJ 3164 Command Network 最小树形图模板

    最小树形图求的是有向图的最小生成树,跟无向图求最小生成树有很大的区别. 步骤大致如下: 1.求除了根节点以外每个节点的最小入边,记录前驱 2.判断除了根节点,是否每个节点都有入边,如果存在没有入边的点 ...

  5. POJ 3164 Command Network 最小树形图 朱刘算法

    =============== 分割线之下摘自Sasuke_SCUT的blog============= 最 小树形图,就是给有向带权图中指定一个特殊的点root,求一棵以root为根的有向生成树T, ...

  6. POJ - 3164-Command Network 最小树形图——朱刘算法

    POJ - 3164 题意: 一个有向图,存在从某个点为根的,可以到达所有点的一个最小生成树,则它就是最小树形图. 题目就是求这个最小的树形图. 参考资料:https://blog.csdn.net/ ...

  7. POJ 3164 Command Network ( 最小树形图 朱刘算法)

    题目链接 Description After a long lasting war on words, a war on arms finally breaks out between littlek ...

  8. POJ 3164——Command Network——————【最小树形图、固定根】

    Command Network Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 15080   Accepted: 4331 ...

  9. POJ 3164 Command Network (最小树形图)

    [题目链接]http://poj.org/problem?id=3164 [解题思路]百度百科:最小树形图 ]里面有详细的解释,而Notonlysucess有精简的模板,下文有对其模板的一点解释,前提 ...

随机推荐

  1. 扯一扯前端css的整体架构设计:(2)base基础类的那些事儿

    周一下午在实验室写了第一篇博文,有几个人捧场,那咱就得接着下去啊.然后我觉得现在写的内容更多的偏向于谈一下我对于前端css架构的理解和前端经验的一个小总结,所以就把标题里原来的[项目总结]给删掉了.但 ...

  2. 【转载】MongoDB参数

    我们可以通过mongod --help查看mongod的所有参数说明,以下是各参数的中文解释. 基本配置–quiet# 安静输出 –port arg# 指定服务端口号,默认端口27017 –bind_ ...

  3. Android--简单开发和使用ContentProvider数据共享

    今天学习的时候学到了ContentProvider数据共享这个东东,所以自己写了个小例子: 我们要开发ContentProvider的话,需要创建一个类去继承ContentProvider,里面会让你 ...

  4. JSON对象和String之间的互转及处理

    如题,本文列举了一些在web前端开发中常用的转换及处理方式.使用JSON而不是字符串,主要是为了方便处理. JSON:JavaScript 对象表示法(JavaScript Object Notati ...

  5. iOS 关于webView的使用方法

    关于webView的使用方法还是比较简单的.直接上代码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ...

  6. Swift function how to return nil

    这两天在学习Stanford出品的iOS7的课程,这个课程去年也看过,但是看到第3课就不行了,满篇的OC,把人都搞晕了.这段时间因为要写个iOS的App,正好赶上了Swift问世,所以趁着这股劲继续学 ...

  7. Android实现Button事件的处理

    Android实现Button事件的处理 开发工具:Andorid Studio 1.3 运行环境:Android 4.4 KitKat 代码实现 首先是最基本的线性布局,给每个控件设立id值,以供代 ...

  8. 深入浅出Spring(五) SpringMVC

    上一篇深入浅出Spring(四) Spring实例分析的博文中,咱们已经可以了解Spring框架的运行原理和实现过程,接下来咱们继续讲解Spring的一个延伸产品——Spring MVC 1.Spri ...

  9. Unity3d之Animation(动画系统)

    1,动画系统配置,2,代码控制动画 原文地址: http://blog.csdn.net/dingkun520wy/article/details/51247487 1,动画系统配置 创建游戏对象并添 ...

  10. 容器适配器之priority_queue

    template <class T, class Container = vector<T>,                class Compare = less<type ...