T(n)=aT(n/b)+f(n);

where we can interpret n/b to mean either floor(b/n) or ceil(b/n), Then T (n) has the following asymptotic bounds:

1. If f (n)= O(nlogb a-c) for some constant c> 0, then T (n)=Θ(nlogb a)
2.If f (n)= Θ(nlogb a), then T (n)=Θ(nlogb a  log n)

3. If f (n)= Ω(nlogb a+c) for some constant c> 0, 
and if af (n/b)>= cf (n)  for

some constant c < 1 and all sufficiently large n, then T (n)= Θ(f(n)).

//

comments:

compare the f(n) and b logb a,and the max will determine the complexity of the recurrence.

in case 1 and case 3 ,the larger determine the complexity of the recurrence,

in case 2,they are  the same size ,so,there add a factor log n.

besides all the comparison must be polynomically smaller or larger.

CLRS:master theory in complexity of algorithm的更多相关文章

  1. No.004:Median of Two Sorted Arrays

    问题: There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the median of the ...

  2. No.023:Merge k Sorted Lists

    问题: Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexit ...

  3. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  4. 关于并行计算的Scan操作

    simple and common parallel algorithm building block is the all-prefix-sums operation. In this chapte ...

  5. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

  6. A Gentle Guide to Machine Learning

    A Gentle Guide to Machine Learning Machine Learning is a subfield within Artificial Intelligence tha ...

  7. No.006:ZigZag Conversion

    问题: The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows l ...

  8. No.005:Longest Palindromic Substring

    问题: Given a string S, find the longest palindromic substring in S. You may assume that the maximum l ...

  9. No.026:Remove Duplicates from Sorted Array

    问题: Given a sorted array, remove the duplicates in place such that each element appear only once and ...

随机推荐

  1. Blockchain概述--转

    编者按:著名投资人 Fred Wilson 的同事 Joel Monegro 近日参加了纽约比特币 workshop HackBit聚会,其间他们讨论了比特币式的思维方式对未来十年世界的影响,而这种影 ...

  2. PLSQL_性能优化工具系列09_SQL Plan Management

    2014-09-24 Created By BaoXinjian

  3. python深入走路

    Python描述符(descriptor)解密 http://www.geekfan.net/7862/

  4. transform.localPosition操作时的一些注意事项

    移动GameObject是非常平常的一件事情,一下代码看起来很简单: transform.localPosition += new Vector3 ( 10.0f * Time.deltaTime, ...

  5. StringIO 模块用于在内存缓冲区中读写数据

    模块是用类编写的,只有一个StringIO类,所以它的可用方法都在类中.此类中的大部分函数都与对文件的操作方法类似. 例: #coding=gbk import StringIO s=StringIO ...

  6. Tomcat启动过程原理详解

    基于Java的Web 应用程序是 servlet.JSP 页面.静态页面.类和其他资源的集合,它们可以用标准方式打包,并运行在来自多个供应商的多个容器.Web 应用程序存在于结构化层次结构的目录中,该 ...

  7. Java多线程之银行出纳员仿真

    package concurrent; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.Qu ...

  8. Android之Handler

    1.Handler默认情况下与主线程处于同一线程 public class MainActivity extends Activity { private Button startButton = n ...

  9. 对 HTTP 304 的理解(转-并增加自己的测试)

    作者:吴俊杰 性别:男 邮箱:sshroot@126.com 文章类型:原创 博客:http://www.cnblogs.com/voiphudong/ 转自: http://www.cnblogs. ...

  10. 建立dblink

    源地址:http://blog.itpub.net/24104981/viewspace-1116085/ create database link dblinkname connect to use ...