T(n)=aT(n/b)+f(n);

where we can interpret n/b to mean either floor(b/n) or ceil(b/n), Then T (n) has the following asymptotic bounds:

1. If f (n)= O(nlogb a-c) for some constant c> 0, then T (n)=Θ(nlogb a)
2.If f (n)= Θ(nlogb a), then T (n)=Θ(nlogb a  log n)

3. If f (n)= Ω(nlogb a+c) for some constant c> 0, 
and if af (n/b)>= cf (n)  for

some constant c < 1 and all sufficiently large n, then T (n)= Θ(f(n)).

//

comments:

compare the f(n) and b logb a,and the max will determine the complexity of the recurrence.

in case 1 and case 3 ,the larger determine the complexity of the recurrence,

in case 2,they are  the same size ,so,there add a factor log n.

besides all the comparison must be polynomically smaller or larger.

CLRS:master theory in complexity of algorithm的更多相关文章

  1. No.004:Median of Two Sorted Arrays

    问题: There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the median of the ...

  2. No.023:Merge k Sorted Lists

    问题: Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexit ...

  3. Cognition math based on Factor Space (2016.05)

    Cognition math based on Factor Space Wang P Z1, Ouyang H2, Zhong Y X3, He H C4 1Intelligence Enginee ...

  4. 关于并行计算的Scan操作

    simple and common parallel algorithm building block is the all-prefix-sums operation. In this chapte ...

  5. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

  6. A Gentle Guide to Machine Learning

    A Gentle Guide to Machine Learning Machine Learning is a subfield within Artificial Intelligence tha ...

  7. No.006:ZigZag Conversion

    问题: The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows l ...

  8. No.005:Longest Palindromic Substring

    问题: Given a string S, find the longest palindromic substring in S. You may assume that the maximum l ...

  9. No.026:Remove Duplicates from Sorted Array

    问题: Given a sorted array, remove the duplicates in place such that each element appear only once and ...

随机推荐

  1. (WCF) WCF and Service Debug

    需要做一个多程序间的通讯,采用WCF和WCF Service是目前的选择. 需求:和产品进行通讯,和用户有交互操作,并将最后结果传送个DB 基本思路: 1. 用WPF客户端程序和产品进行通讯,获取必要 ...

  2. 手把手教你玩转Git分布式版本控制系统!

    目录 Git诞生历史 Git环境准备 Git安装部署 Git常用命令 Git基本操作 Git管理分支结构 Git管理标签 GitLab安装部署 GitHub托管服务 Git客户端工具 1 Git诞生历 ...

  3. Spark运行流程概述

    Application 指用户编写的Spark应用程序,其中包含了一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码. Driver Spark中的Driver即运行上述Ap ...

  4. Form_Form页面跳转的四种方式(open_form, call_form, new_form, fnd_function)详解(汇总)

    2014-06-29 Created By BaoXinjian

  5. POJ 3984 迷宫问题(BFS)

    迷宫问题 Description 定义一个二维数组: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, ...

  6. apache 开启服务器包含(SSI)技术

    SSI(server-side includes)能帮我们实现什么功能: SSI提供了一种对现有HTML文档增加动态内容的方法,  即 在html中加入动态内容 SSI是嵌入HTML页面中的指令,在页 ...

  7. poj 3040 Allowance

    Allowance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1842   Accepted: 763 Descript ...

  8. Centos下使用gitosis配置管理git服务端(转载)

    From:http://www.cnblogs.com/ahauzyy/archive/2013/04/08/3043384.html 说明:由于条件有限,我这里使用的是同一台centos的,但教程内 ...

  9. 用java程序调用ffmpeg执行视频文件格式转换flv

    用java小例题说明更直观:(可以直接编译运行)环境我在windows平台下测试的...需要在e:/下有ffmpeg.exe;mencoder.exe;drv43260.dll;pncrt.dll共4 ...

  10. java小程序 示例

    乘法表: package com.test; import org.junit.Test; public class TestSwitch { @Test public void test() { f ...