Python标准库11 多进程探索 (multiprocessing包)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
在初步了解Python多进程之后,我们可以继续探索multiprocessing包中更加高级的工具。这些工具可以让我们更加便利地实现多进程。
进程池
进程池 (Process Pool)可以创建多个进程。这些进程就像是随时待命的士兵,准备执行任务(程序)。一个进程池中可以容纳多个待命的士兵。
“三个进程的进程池”
比如下面的程序:

import multiprocessing as mul def f(x):
return x**2 pool = mul.Pool(5)
rel = pool.map(f,[1,2,3,4,5,6,7,8,9,10])
print(rel)

我们创建了一个容许5个进程的进程池 (Process Pool) 。Pool运行的每个进程都执行f()函数。我们利用map()方法,将f()函数作用到表的每个元素上。这与built-in的map()函数类似,只是这里用5个进程并行处理。如果进程运行结束后,还有需要处理的元素,那么的进程会被用于重新运行f()函数。除了map()方法外,Pool还有下面的常用方法。
apply_async(func,args) 从进程池中取出一个进程执行func,args为func的参数。它将返回一个AsyncResult的对象,你可以对该对象调用get()方法以获得结果。
close() 进程池不再创建新的进程
join() wait进程池中的全部进程。必须对Pool先调用close()方法才能join。
练习
有下面一个文件download.txt。

www.sina.com.cn
www.163.com
www.iciba.com
www.cnblogs.com
www.qq.com
www.douban.com

使用包含3个进程的进程池下载文件中网站的首页。(你可以使用subprocess调用wget或者curl等下载工具执行具体的下载任务)
共享资源
我们在Python多进程初步已经提到,我们应该尽量避免多进程共享资源。多进程共享资源必然会带来进程间相互竞争。而这种竞争又会造成race condition,我们的结果有可能被竞争的不确定性所影响。但如果需要,我们依然可以通过共享内存和Manager对象这么做。
共享“资源”
共享内存
在Linux进程间通信中,我们已经讲述了共享内存(shared memory)的原理,这里给出用Python实现的例子:

# modified from official documentation
import multiprocessing def f(n, a):
n.value = 3.14
a[0] = 5 num = multiprocessing.Value('d', 0.0)
arr = multiprocessing.Array('i', range(10)) p = multiprocessing.Process(target=f, args=(num, arr))
p.start()
p.join() print num.value
print arr[:]

这里我们实际上只有主进程和Process对象代表的进程。我们在主进程的内存空间中创建共享的内存,也就是Value和Array两个对象。对象Value被设置成为双精度数(d), 并初始化为0.0。而Array则类似于C中的数组,有固定的类型(i, 也就是整数)。在Process进程中,我们修改了Value和Array对象。回到主程序,打印出结果,主程序也看到了两个对象的改变,说明资源确实在两个进程之间共享。
Manager
Manager对象类似于服务器与客户之间的通信 (server-client),与我们在Internet上的活动很类似。我们用一个进程作为服务器,建立Manager来真正存放资源。其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。在防火墙允许的情况下,我们完全可以将Manager运用于多计算机,从而模仿了一个真实的网络情境。下面的例子中,我们对Manager的使用类似于shared memory,但可以共享更丰富的对象类型。

import multiprocessing def f(x, arr, l):
x.value = 3.14
arr[0] = 5
l.append('Hello') server = multiprocessing.Manager()
x = server.Value('d', 0.0)
arr = server.Array('i', range(10))
l = server.list() proc = multiprocessing.Process(target=f, args=(x, arr, l))
proc.start()
proc.join() print(x.value)
print(arr)
print(l)

Manager利用list()方法提供了表的共享方式。实际上你可以利用dict()来共享词典,Lock()来共享threading.Lock(注意,我们共享的是threading.Lock,而不是进程的mutiprocessing.Lock。后者本身已经实现了进程共享)等。 这样Manager就允许我们共享更多样的对象。
我们在这里不深入讲解Manager在远程情况下的应用。有机会的话,会在网络应用中进一步探索。
总结
Pool
Shared memory, Manager
Python标准库11 多进程探索 (multiprocessing包)的更多相关文章
- Python标准库10 多进程初步 (multiprocessing包)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们已经见过了使用subprocess包来创建子进程,但这个包有两个很大的局限性: ...
- Python学习笔记18:标准库之多进程(multiprocessing包)
我们能够使用subprocess包来创建子进程.但这个包有两个非常大的局限性: 1) 我们总是让subprocess执行外部的程序,而不是执行一个Python脚本内部编写的函数. 2) 进程间仅仅通过 ...
- Python标准库04 文件管理 (部分os包,shutil包)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 在操作系统下,用户可以通过操作系统的命令来管理文件,参考linux文件管理相关命令 ...
- Python标准库05 存储对象 (pickle包,cPickle包)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 谢谢reverland纠错 在之前对Python对象的介绍中 (面向对象的基本概念 ...
- python_lesson2 多进程探索 (multiprocessing包)
进程池 进程池 (Process Pool)可以创建多个进程.这些进程就像是随时待命的士兵,准备执行任务(程序).一个进程池中可以容纳多个待命的士兵. import multiproces ...
- python 标准库 —— 线程与同步(threading、multiprocessing)
1. 创建线程 使用 os 下的 fork() 函数调用(仅限 Unix 系统) import os print('current process (%s) starts ...' % (os.get ...
- Python标准库07 信号 (signal包,部分os包)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 在了解了Linux的信号基础之后,Python标准库中的signal包就很容易学习 ...
- Python标准库09 当前进程信息 (部分os包)
原文:Python标准库09 当前进程信息 (部分os包) 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们在Linux的概念 ...
- Python标准库笔记(11) — Operator模块
Operator--标准功能性操作符接口. 代码中使用迭代器时,有时必须要为一个简单表达式创建函数.有些情况这些函数可以用一个lambda函数实现,但是对于某些操作,根本没必要去写一个新的函数.因此o ...
随机推荐
- Lua5.1基本函数库介绍
Lua5.1基本函数库介绍assert (v [, message])功能:相当于C的断言,参数:v:当表达式v为nil或false将触发错误,message:发生错误时返回的信息,默认为" ...
- Linux 下 Lua 与 LuaSQL 模块安装
相关说明: Lua最近在Nginx的web服务器上挺火的, 它的高效让更多开发喜欢上它, 本文讲述Lua与LuaSQL的安装. 在上几篇mysql-proxy的安装中有提到和操作过. 操作系统: Li ...
- dictEntry **table;
typedef struct dictht { dictEntry **table; PORT_ULONG size; PORT_ULONG sizemask; PORT_ULONG used;} d ...
- Debugging a Parallel Application
Walkthrough: Debugging a Parallel Application https://msdn.microsoft.com/en-us/library/dd554943.aspx ...
- 怎么提高OCR文字识别软件的识别正确率
在OCR文字识别软件当中,ABBYY FineReader是比较好用的程序之一,但再好的识别软件也不能保证100%的识别正确率,用户都喜欢软件的正确率高一些,以减轻识别后修正的负担,很多用户也都提过这 ...
- 【转】asp.net中利用session对象传递、共享数据[session用法]
来自:http://blog.unvs.cn/archives/session-transfer-method.html 下面介绍Asp.net中利用session对象传递.共享数据用法: 1.传递值 ...
- javascript 函数节流方法
函数节流可以缓解调用的次数,代码如下: function throttle(method,delay){ var timer=null; return function(){ var context= ...
- 使用 Knockout 扩展器扩展 observables
原文地址:http://knockoutjs.com/documentation/extenders.html 原文名称:Using extenders to augment observables ...
- javascript中单体模式的实现
单体模式作为一种软件开发模式在众多面向对象语言中得到了广泛的使用,在javascript中,单体模式也是使用非常广泛的,但是由于javascript语言拥有其独特的面向对象方式,导致其和一些传统面向对 ...
- javascript util.js
//根据Id获得页面元素 function $(para) { return document.getElementById(para);} //创建一个新的元素function createE ...