http://www.cbcb.umd.edu/software/jellyfish/
 
http://www.genome.umd.edu/jellyfish.html
https://github.com/gmarcais/Jellyfish/releases
 
 
wget https://github.com/gmarcais/Jellyfish/releases/download/v2.2.3/jellyfish-2.2.3-CentOS6.tar.gz
tar -zxvf jellyfish-2.2.3-CentOS6.tar.gz
 
jellyfish就在bin里面,直接将这个可执行程序复制到你的环境变量目录里就可以用了
服务器安装包地址:
/home/cmiao/jellyfish-2.2.3
 
 
 
 
 
jellyfish不能用fq.gz 要先转为fq才行
用gunzip -c *.fq.gz > *.fq 
 
$ jellyfish count -t 30 -C -m 21 -s 150G  --min-quality=20 --quality-start=33 ./*.fastq
 
Assume a haploid genome, for simplicity. In the picture provided, the first peak at depth ~31 indicates amount of 1-copy content (in other words, the genome has exactly 1 copy of that kmer, so it is unique). The weak peak at ~62x indicates the amount of 2-copy content. Everything under ~11x can be assumed to be error kmers, unrelated to genome size.

So, to estimate manually, take the sum of the counts of unique kmers under the first peak and multiply by 1; add the sum of the counts of unique kmers under the peak at 2x the depth of the first peak and multiply by 2; etc, for all peaks. This will give you the haploid genome size. So if your genome is tetraploid, the actual size will be 1/4 of your result, since the first peak will correspond to mutations present on only 1 ploidy (1/0/0/0 genotype).

You can make this more accurate by modelling the peaks as a sum of Gaussian curves, but that probably won't change the result much. Of course, this method is subjective because calling peaks is subjective.

Please note - I think 17-mers are too short for this kind of analysis. I prefer 31-mers because they are the longest computationally-efficient kmers. Also, FYI, BBNorm is faster than Jellyfish and can also generate kmer-frequency histograms:

khist.sh in=reads.fq hist=khist.txt

Also, it makes more sense to plot these things as log-log rather than linear-linear; and the Y-axis should be count, not frequency, which is useless for the purpose of genome-size estimation.
 

Outline

  1. count k-mer occurence using Jellyfish (jellyfish count)
  2. summarize as histogram (jellyfish histo)
  3. plot graph with R
  4. determine the total number of k-mer analyzed and the peak position
  5. compare the peak shape with poisson distribution

Count k-mer occurence

In this example we have 5 pair of fastq files in three different subdirectories. The file to process can be specified with "*/*.qf.fastq" and veriied with ls.

$ ls */*.qf.fastq
run1/s_1_1_sequence.qf.fastq  run2/s_2_2_sequence.qf.fastq
run1/s_1_2_sequence.qf.fastq  run3/s_1_1_sequence.qf.fastq
run2/s_1_1_sequence.qf.fastq  run3/s_1_2_sequence.qf.fastq
run2/s_1_2_sequence.qf.fastq  run3/s_2_1_sequence.qf.fastq
run2/s_2_1_sequence.qf.fastq  run3/s_2_2_sequence.qf.fastq

Next, we issue the jellyfish count command

jellyfish count -t 8 -C -m 25 -s 5G -o spec1_25mer --min-quality=20 --quality-start=33 */*.qf.fastq
-t 8
specifies the number of threads to be used. This value should be equal to the number of cores on the machine or the number of slots you reserved through job management system ($NSLOTS in SGE or UGE).
-C
specifies the both strands are considered. If you do not specify this, the apparent depth would be half, --- that is undesirable
-m 25
specified that now you are counting for 25 mer (i.e., k=25)
-s 5G
is some kind of magical number specification of hash size. This should be as high as the physical memory allows. The higher the faster, but exceeding the available memory leads to failure or extremely slow counting.
-o spec1_25mer
specifies the prefix of output file names.
--quality-start=33
specified that your fastq file have 33 based quality value string. Be careful on the dataformat. There are cases that your data are 64 based depending on the sequending system and software versions. This is relevant only when you specify --min-quality
--min-quality=20
specifies that nucleotide having qv lower than 20 should not included in the count. This selection reduces the k-mers derived from sequence errors and make the peak clearer.
*/*.qf.fastq
will be expanded to the ten filenames explained above by the shell and passed to jellyfish as input files

summarize as histogram (jellyfish histo)

First confirm that you got the output file

$ ls spec1_25mer*
spec1_25mer_0

now that there is a single file spec1_25mer_0

$ jellyfish histo -o spec1_25mer.histo spec1_25mer_0

Confirm that you got the output

$ ls spec1_25mer*
spec1_25mer_0  spec1_25mer.histo

Examine the numbers by your eyes

$ head -25 spec1_25mer.histo
1 461938583
2 95606044
3 19280477
4 13836754
5 11018480
6 9555090
7 8557935
8 7863244
9 7319505
10 6920880
11 6589723
12 6321923
13 6148638
14 6036120
15 5972264
16 5962234
17 5987696
18 6051171
19 6154429
20 6297373
21 6485135
22 6700579
23 6932570
24 7217627
25 7533211
 
 
运行出错:
terminate called after throwing an instance of 'jellyfish::invertible_hash::ErrorAllocation'
  what():  Failed to allocate 628292358736 bytes of memory
Aborted (core dumped)
解决:
50G should be more than enough. That is the amount of memory I usually am using and I have never had any problems. This also means that you probably do not need the high memory nodes.
 
 
 
 
 
freemao
FAFU

jellyfish K-mer analysis and genome size estimate的更多相关文章

  1. Evaluate|GC content|Phred|BAC|heterozygous single nucleotide polymorphisms|estimate genome size|

    (Evaluate):检查reads,可使用比对软件:使用SOAPaligner重新排列:采用massively parallel next-generation sequencing technol ...

  2. Maximum Size Subarray Sum Equals k -- LeetCode

    Given an array nums and a target value k, find the maximum length of a subarray that sums to k. If t ...

  3. 【LeetCode】325. Maximum Size Subarray Sum Equals k 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 prefix Sum 日期 题目地址:https:// ...

  4. The sequence and de novo assembly of the giant panda genome.ppt

    sequencing:使用二代测序原因:高通量,短序列 不用长序列原因: 1.算法错误率高 2.长序列测序将嵌合体基因错误积累.嵌合体基因:通过重组由来源与功能不同的基因序列剪接而形成的杂合基因 se ...

  5. [LeetCode] Longest Substring with At Least K Repeating Characters 至少有K个重复字符的最长子字符串

    Find the length of the longest substring T of a given string (consists of lowercase letters only) su ...

  6. [LeetCode] Kth Largest Element in an Array 数组中第k大的数字

    Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...

  7. k近邻算法的Java实现

    k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系.输入没有标签的新数据之后, ...

  8. 6.3Sum && 4Sum [ && K sum ] && 3Sum Closest

    3Sum Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find a ...

  9. 剑指offer系列55---最小的k个数

    [题目] 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. *[思路]排序,去除k后的数. package com.exe11 ...

随机推荐

  1. 使用tomcat配置文件下载服务器,自定义下载列表

    先上图,利用tomcat,这个下载界面没有代码,点击文件名即可下载 详细参考:http://tomcat.apache.org/tomcat-7.0-doc/default-servlet.html

  2. jquery 字数限制

    $("#TextArea1").keydown(function(){ 10 var curLength=$("#TextArea1").val().lengt ...

  3. S1 : 函数

    一.做为值的函数 例如,假设有一个对象数组,我们想要根据某个对象属性对数组进行排序.而传递给数组sort()方法的比较函数要接收两个参数,即要比较的值.可是,我们需要一种方式来指明按照哪个属性来排序. ...

  4. 各种常用函数 (SQL)

    数学函数 1.绝对值 S:select abs(-1) value O:select abs(-1) value from dual   2.取整(大) S:select ceiling(-1.001 ...

  5. 2.精通前端系列技术之seajs和gruntJs结合开发(三)

    1.我们先来了解下模块化历史 模块化历史 nodeJS的出现(http://nodejs.org/) commonJS规范(http://www.commonjs.org/) 浏览器JS的模块化? A ...

  6. (DFS)hdoj1175:连连看

    题目链接 这道题被稍微改编当作过去年的期末上机题,也被直接放到了这次这一届的第二次练习赛.当初刚看到这道题时DFS并没有系统的学过,做起来极其费劲.现在学过之后开始实践练习,发现这道题真的是很水. 我 ...

  7. Deep Learning 初识

    实际生活中,人们为了解决一个问题,如对象的分类(对象可是是文档.图像等),首先必须做的事情是如何来表达一个对象,即必须抽取一些特征来表示一个对象,如文本的处理中,常常用词**来表示一个文档,或把文档表 ...

  8. SQlServer 从系统表 sysobjects 中获取数据库中所有表或存储过程等对象

    [sysobjects] 一.概述 系统对象表. 保存当前数据库的对象,如约束.默认值.日志.规则.存储过程等,该表中包含该数据库中的表 存储过程 视图等所有对象 在sqlserver2005,sql ...

  9. 多线程第一次亲密接触 CreateThread与_beginthreadex本质区别

    本文将带领你与多线程作第一次亲密接触,并深入分析CreateThread与_beginthreadex的本质区别,相信阅读本文后你能轻松的使用多线程并能流畅准确的回答CreateThread与_beg ...

  10. Apache Qpid Python 1.35.0 发布

    Apache Qpid Python 1.35.0 发布了,Apache Qpid (Open Source AMQP Messaging) 是一个跨平台的企业通讯解决方案,实现了高级消息队列协议.提 ...