【BZOJ】【1004】【HNOI2008】Cards
Burnside/Polya+背包DP
这道题目是等价类计数裸题吧……>_>
题解:http://m.blog.csdn.net/blog/njlcazl_11109/8316340
啊其实重点还是:找出每个置换下的不动点数目
这道题比较特殊,牌的数量是限定的,所以只能DP来搞……(dp[R][G][B]表示的是R张红牌,G张绿牌,B张蓝牌在当前这个置换下,有多少种方案是会置换回自身的)
恒等置换单独处理一下即可(其实就是总染色数,多重集排列数吧……$\frac{N!}{R!G!B!}$)
最后除以m+1即可
P.S.因为是模意义下,所以所有的除法都是乘逆元。。。
/**************************************************************
Problem: 1004
User: Tunix
Language: C++
Result: Accepted
Time:104 ms
Memory:1708 kb
****************************************************************/ //BZOJ 1004
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
typedef long long LL;
inline int getint(){
int r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if (ch=='-') r=-;
for(; isdigit(ch);ch=getchar()) v=v*-''+ch;
return r*v;
}
const int N=;
/*******************template********************/
int n,m,p,R,G,B;
int f[N][N],c[N];
int dp[N][][]; int Pow(int a,int b,int P){
int r=;
for(;b;b>>=,a=a*a%P)
if (b&) r=r*a%P;
return r;
}
bool vis[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("1004.in","r",stdin);
freopen("1004.out","w",stdout);
#endif
R=getint(); B=getint(); G=getint(); m=getint(); p=getint();
n=R+G+B;
int sum=,cnt=,num;
F(i,,n) sum=(sum*i)%p;
F(i,,R) sum=(sum*Pow(i,p-,p))%p;
F(i,,G) sum=(sum*Pow(i,p-,p))%p;
F(i,,B) sum=(sum*Pow(i,p-,p))%p;
F(i,,m) F(j,,n) f[i][j]=getint();
F(i,,m){
memset(vis,,sizeof vis);
memset(dp,,sizeof dp);
memset(c,,sizeof c);
cnt=;
F(j,,n) if (!vis[j]){
int tmp=j,num=;
while(!vis[tmp]){
vis[tmp]=;
tmp=f[i][tmp];
num++;
}
c[++cnt]=num;
}
// printf("cnt=%d\n",cnt);
// F(i,1,cnt) printf("%d ",c[i]); puts("");
dp[][][]=;
F(j,,cnt) F(r,,R) F(g,,G) F(b,,B){
if (r>=c[j]) (dp[r][g][b]+=dp[r-c[j]][g][b])%=p;
if (g>=c[j]) (dp[r][g][b]+=dp[r][g-c[j]][b])%=p;
if (b>=c[j]) (dp[r][g][b]+=dp[r][g][b-c[j]])%=p;
// printf("dp[%d][%d][%d]=%d\n",r,g,b,dp[r][g][b]);
}
sum=(sum+dp[R][G][B])%p;
}
sum=(sum*Pow(m+,p-,p))%p;
printf("%d\n",sum);
return ;
}
1004: [HNOI2008]Cards
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2094 Solved: 1241
[Submit][Status][Discuss]
Description
小
春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答
案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案.
最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌
法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).
Input
第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述
一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,
第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种
洗牌法,都存在一种洗牌法使得能回到原状态。
Output
不同染法除以P的余数
Sample Input
2 3 1
3 1 2
Sample Output
HINT
有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 和GRB。
100%数据满足 Max{Sr,Sb,Sg}<=20。
Source
【BZOJ】【1004】【HNOI2008】Cards的更多相关文章
- 【BZOJ 2754 喵星球上的点名】
Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 2512 Solved: 1092[Submit][Status][Discuss] Descript ...
- 【BZOJ 1004】 [HNOI2008]Cards
[题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 [题意] 给你sr+sb+sg张牌,(令n=sr+sb+sg),让你把这n张牌染 ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
- 【BZOJ】3052: [wc2013]糖果公园
http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
- 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...
- 【BZOJ】【1025】【SCOI2009】游戏
DP/整数拆分 整个映射关系可以分解成几个循环(置换群的预备知识?),那么总行数就等于各个循环长度的最小公倍数+1(因为有个第一行的1~N).那么有多少种可能的排数就等于问有多少种可能的最小公倍数. ...
- 【BZOJ】1013: [JSOI2008]球形空间产生器sphere
[BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...
- 【BZOJ1010】【HNOI2008】玩具装箱(斜率优化,动态规划)
[BZOJ1010][HNOI2008]玩具装箱 题面 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...
- 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
随机推荐
- [译]MongoDB 3.0发布说明
原文来自:http://docs.mongodb.org/manual/release-notes/3.0/ 2015年3月3日 MongoDB 3.0现已可供使用.关键新特性包括支持WiredTig ...
- php循环创建目录
代码取自thinkphp中: function mk_dir($dir, $mod = 0777) { if(!is_dir($dir) || mkdir($dir, $mod)) { if(!mk_ ...
- java android 访问DELPHI 的DATASNAP
最新版的DELPHI开发DATASNAP非常简单便捷,DataSnap的REST风格和对JSON的支持,使之成为服务器端开发的神器. 一.DATASNAP服务器中的方法: TServerMethods ...
- C# 查询Windows Service 信息 ,所在目录 启动状态
1.WMI简介WMI是英文Windows Management Instrumentation的简写,它的功能主要是:访问本地主机的一些信息和服务,可以管理远程计算机(当然你必须要拥有足够的权限),比 ...
- partition实现
partition的作用是把环形缓冲区中的map输出分区存储,以便分配给不同的reducer. 把内部的实现写下来,作为一个学习笔记 在map函数,调用context.write()时,会去调用分区函 ...
- 11.python中的元组
在学习什么是元组之前,我们先来看看如何创建一个元组对象: a = ('abc',123) b = tuple(('def',456)) print a print b
- struts2 s:if标签以及 #,%{},%{#}的使用方法等在资料整理
<s:if>判断字符串的问题: 1.判断单个字符:<s:if test="#session.user.username=='c'"> 这样是从session ...
- C#中virtual和abstract的区别
先说区别: virtual意思是虚拟,abstract意思是抽象. virtual只修饰方法,abstract修饰方法和类. virtual方法必须有实现,abstract方法必须没有实现. publ ...
- 如何实现GridView的选中,编辑,取消,删除功能
protected void GridView1_RowDeleting(object sender, GridViewDeleteEventArgs e) { string sqlstr = &qu ...
- hdu 1908 Double Queue
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1908 Double Queue Description The new founded Balkan ...