Burnside/Polya+背包DP


  这道题目是等价类计数裸题吧……>_>

  题解:http://m.blog.csdn.net/blog/njlcazl_11109/8316340

  啊其实重点还是:找出每个置换下的不动点数目

  这道题比较特殊,牌的数量是限定的,所以只能DP来搞……(dp[R][G][B]表示的是R张红牌,G张绿牌,B张蓝牌在当前这个置换下,有多少种方案是会置换回自身的)

  恒等置换单独处理一下即可(其实就是总染色数,多重集排列数吧……$\frac{N!}{R!G!B!}$)

  最后除以m+1即可

P.S.因为是模意义下,所以所有的除法都是乘逆元。。。

 /**************************************************************
Problem: 1004
User: Tunix
Language: C++
Result: Accepted
Time:104 ms
Memory:1708 kb
****************************************************************/ //BZOJ 1004
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
typedef long long LL;
inline int getint(){
int r=,v=; char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if (ch=='-') r=-;
for(; isdigit(ch);ch=getchar()) v=v*-''+ch;
return r*v;
}
const int N=;
/*******************template********************/
int n,m,p,R,G,B;
int f[N][N],c[N];
int dp[N][][]; int Pow(int a,int b,int P){
int r=;
for(;b;b>>=,a=a*a%P)
if (b&) r=r*a%P;
return r;
}
bool vis[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("1004.in","r",stdin);
freopen("1004.out","w",stdout);
#endif
R=getint(); B=getint(); G=getint(); m=getint(); p=getint();
n=R+G+B;
int sum=,cnt=,num;
F(i,,n) sum=(sum*i)%p;
F(i,,R) sum=(sum*Pow(i,p-,p))%p;
F(i,,G) sum=(sum*Pow(i,p-,p))%p;
F(i,,B) sum=(sum*Pow(i,p-,p))%p;
F(i,,m) F(j,,n) f[i][j]=getint();
F(i,,m){
memset(vis,,sizeof vis);
memset(dp,,sizeof dp);
memset(c,,sizeof c);
cnt=;
F(j,,n) if (!vis[j]){
int tmp=j,num=;
while(!vis[tmp]){
vis[tmp]=;
tmp=f[i][tmp];
num++;
}
c[++cnt]=num;
}
// printf("cnt=%d\n",cnt);
// F(i,1,cnt) printf("%d ",c[i]); puts("");
dp[][][]=;
F(j,,cnt) F(r,,R) F(g,,G) F(b,,B){
if (r>=c[j]) (dp[r][g][b]+=dp[r-c[j]][g][b])%=p;
if (g>=c[j]) (dp[r][g][b]+=dp[r][g-c[j]][b])%=p;
if (b>=c[j]) (dp[r][g][b]+=dp[r][g][b-c[j]])%=p;
// printf("dp[%d][%d][%d]=%d\n",r,g,b,dp[r][g][b]);
}
sum=(sum+dp[R][G][B])%p;
}
sum=(sum*Pow(m+,p-,p))%p;
printf("%d\n",sum);
return ;
}

1004: [HNOI2008]Cards

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2094  Solved: 1241
[Submit][Status][Discuss]

Description


春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答
案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝色.他又询问有多少种方案,Sun想了一下,又给出了正确答案.
最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌
法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述
一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,
第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种
洗牌法,都存在一种洗牌法使得能回到原状态。

Output

不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

Source

[Submit][Status][Discuss]

【BZOJ】【1004】【HNOI2008】Cards的更多相关文章

  1. 【BZOJ 2754 喵星球上的点名】

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2512  Solved: 1092[Submit][Status][Discuss] Descript ...

  2. 【BZOJ 1004】 [HNOI2008]Cards

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 [题意] 给你sr+sb+sg张牌,(令n=sr+sb+sg),让你把这n张牌染 ...

  3. 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...

  4. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  5. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  6. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  7. 【BZOJ】【1025】【SCOI2009】游戏

    DP/整数拆分 整个映射关系可以分解成几个循环(置换群的预备知识?),那么总行数就等于各个循环长度的最小公倍数+1(因为有个第一行的1~N).那么有多少种可能的排数就等于问有多少种可能的最小公倍数. ...

  8. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  9. 【BZOJ1010】【HNOI2008】玩具装箱(斜率优化,动态规划)

    [BZOJ1010][HNOI2008]玩具装箱 题面 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

  10. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

随机推荐

  1. 史上最全Vim快捷键键位图(入门到进阶)

    经典版 下面这个键位图应该是大家最常看见的经典版了. 对应的简体中文版 其实经典版是一系列的入门教程键位图的组合结果,下面是不同编辑模式下的键位图. 入门版 基本操作的入门版. 进阶版 增强版 下图是 ...

  2. 一个特别不错的jQuery快捷键插件:js-hotkeys

    这其实不是什么新技术,这个插件在很早前就已经发布了,之前有项目用到,所以分享出来添加方式的例子 jQuery.hotkeys.add('esc',function (){ //执行函数 }); jQu ...

  3. Windows7下Microsoft Office Excel 不能访问文件解决方案

    1).开始--〉运行--〉cmd 2)命令提示符下面,输入mmc -32,打开32的控制台 3).文件菜单中,添加删除管理单元--〉组件服务 4).在"DCOM配置"中找到&quo ...

  4. 使用DataGridView数据窗口控件,构建用户快速输入体验

    在"随风飘散" 博客里面,介绍了一个不错的DataGridView数据窗口控件<DataGridView数据窗口控件开发方法及其源码提供下载>,这种控件在有些场合下,还 ...

  5. Linux源代码情景分析读书笔记 物理页面的分配

    函数 alloc_pages流程图

  6. oracle 配置 oem

    1.启动命令是[oracle@yoon ~]$ cd $ORACLE_HOME/bin [oracle@yoon ~]$ ./emctl start dbconsole 停止命令是[oracle@yo ...

  7. linux下更改文件夹所属用户和用户组

    改变所属用户组:chgrp -R users filename -R是为了递归改变文件夹下的文件和文件夹,users是要改为的用户组名称,filename是要改变的文件夹名称 ============ ...

  8. android开发中经常遇到的问题汇总

    大家都在为项目开发成功而喜悦,但可不知成功的路上是会经常出错的,下面是我碰到的一些错误集合! [错误信息] [2011-01-19 16:39:10 - ApiDemos] WARNING: Appl ...

  9. Android Studio SDK 更新方法

    通常情况下,下载Android SDK需要连接谷歌的服务器进行下载,由于国内水深火热的网络,速度基本为0.好在国内也有一个更新的镜像地址.本文章介绍如何在不FQ的情况下,使用国内镜像地址,更新andr ...

  10. ListBox mvvm 学习笔记

    1. ListBox  MvvM 例子1. 简单的绑定,ItemsSource 绑定到一个实现了IEnumerable 的类上.一般该绑定都是双向的,所以优先考虑使用 ObservableCollec ...