题意:本题给出一个直线,推断是否有整数点在这条直线上;

分析:本题最重要的是在给出的直线是不是平行于坐标轴,即A是不是为0或B是不是为0.。此外。本题另一点就是C输入之后要取其相反数,才干进行扩展欧几里得求解

关于扩展欧几里得详见:http://blog.csdn.net/qq_27599517/article/details/50888092

代码例如以下:

#include <set>
#include <map>
#include <stack>
#include <queue>
#include <math.h>
#include <vector>
#include <utility>
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <functional> using namespace std;
long long gcd(long long a,long long b){
if(b==0)return a;
return gcd(b,a%b);
}
void _gcd(long long a,long long b,long long &x,long long &y){
if(b==1){
x=1;
y=1-a;
return;
}
else{
long long x1,y1;
_gcd(b,a%b,x1,y1);
x=y1;
y=x1-(a/b)*x;
}
}
int main(){
long long a,b,c;
scanf("%I64d%I64d%I64d",&a,&b,&c);
c=-c;
if(a==0&&b==0){
puts("-1");
return 0;
}
if(a==0&&b!=0){
if(c%b==0){
cout<<0<<" "<<c/b<<endl;
}
else puts("-1");
return 0;
}
if(a!=0&&b==0){
if(c%a==0){
cout<<c/a<<" "<<0<<endl;
}
else puts("-1");
return 0;
}
int g=gcd(a,b);
if(c%g!=0){
puts("-1");
return 0;
}
c/=g;
a/=g;
b/=g;
long long x,y;
_gcd(a,b,x,y);
x=(x*c%b+b)%b;
y=(c-a*x)/b;
cout<<x<<" "<<y<<endl;
return 0;
}

Line(扩展欧几里得)的更多相关文章

  1. Codeforces7C 扩展欧几里得

    Line Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

  2. POJ2115(扩展欧几里得)

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23700   Accepted: 6550 Descr ...

  3. Root(hdu5777+扩展欧几里得+原根)2015 Multi-University Training Contest 7

    Root Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Su ...

  4. UVA 10090 Marbles(扩展欧几里得)

    Marbles Input: standard input Output: standard output I have some (say, n) marbles (small glass ball ...

  5. [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)

    Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...

  6. Root(hdu5777+扩展欧几里得+原根)

    Root                                                                          Time Limit: 30000/1500 ...

  7. Gym100812 L 扩展欧几里得

    L. Knights without Fear and Reproach time limit per test 2.0 s memory limit per test 256 MB input st ...

  8. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  9. UVA 12169 Disgruntled Judge 枚举+扩展欧几里得

    题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...

随机推荐

  1. 乐字节-Java8核心特性实战之Lambda表达式

    大家好,小乐又来给大家分享Java8核心特性了,上一篇文章是<乐字节|Java8核心实战-接口默认方法>,这次就来讲Java8核心特征之Lambda表达式. Java8 引入Lambda表 ...

  2. HBase学习----windows10下使用eclipse搭建HBase的开发环境

    以下是我搭建HBase开发环境的一些心得(windows10) 0.安装JDK和eclipse和一个可用的HBase. 这步是最基础的,在此就不赘述了 1.创建一个java项目: 基础问题,不赘述. ...

  3. BZOJ 3509 分块FFT

    思路: 跟今年WC的题几乎一样 (但是这道题有重 不能用bitset水过去) 正解:分块FFT http://blog.csdn.net/geotcbrl/article/details/506364 ...

  4. C# 2.0新加特性

    泛型(Generics) 泛型是CLR 2.0中引入的最重要的新特性,使得可以在类.方法中对使用的类型进行参数化. 例如,这里定义了一个泛型类: class MyCollection<T> ...

  5. 编译OpenCV遇到Qmake问题

    1.Ubuntu安装OpenCv,出现:qmake: could not exec '/usr/lib/x86_64-linux-gnu/qt4/bin/qmake': No such file or ...

  6. ML及AI资源索引

    原文链接:http://blog.csdn.net/pongba/article/details/2915005 机器学习与人工智能学习资源导引 TopLanguage(https://groups. ...

  7. JS 实现类似打印的效果(一个字一个字显示)

    <pre id="aa"></pre> <div style="display:none" id="w"> ...

  8. 页面footer在底部

    页脚动态贴在底部需要满足以下两个条件: 当主体的内容高度不超过可视区域高度的时候,页脚贴在页面底部. 当主体的内容高度超过可视区域高度的时候,页脚将按正常布局. 方法一:footer高度固定+绝对定位 ...

  9. Swift - 关键字(typealias、associatedtype)

    Typealias typealias 是用来为已经存在的类型重新定义名字的,通过命名,可以使代码变得更加清晰.使用的语法也很简单,使用typealias 关键字像使用普通的赋值语句一样,可以将某个已 ...

  10. MVC 接收文件

    [HttpPost] public ActionResult Layedit() { var files = Request.Files; //获得所上传的所有文件 ) { HttpPostedFil ...