caioj 1073 动态规划入门(三维一边推:最长公共子序列加强版(三串LCS))
三维的与二维大同小异,看代码。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 112;
char a[MAXN], b[MAXN], c[MAXN];
int f[MAXN][MAXN][MAXN], path[MAXN][MAXN][MAXN];
void print(int x, int y, int z)
{
int t = path[x][y][z];
if(t == 1)
{
print(x - 1, y - 1, z - 1);
putchar(a[x]);
}
else if(t == 2) print(x - 1, y, z);
else if(t == 3) print(x, y - 1, z);
else if(t == 4) print(x, y, z - 1);
}
int main()
{
scanf("%s%s%s", a + 1, b + 1, c + 1);
int lena = strlen(a + 1), lenb = strlen(b + 1), lenc = strlen(c + 1);
REP(i, 1, lena + 1)
REP(j, 1, lenb + 1)
REP(k, 1, lenc + 1)
{
if(a[i] == b[j] && b[j] == c[k])
{
f[i][j][k] = f[i-1][j-1][k-1] + 1;
path[i][j][k] = 1;
}
else
{
f[i][j][k] = max(f[i-1][j][k], max(f[i][j-1][k], f[i][j][k-1]));
if(f[i][j][k] == f[i-1][j][k]) path[i][j][k] = 2;
if(f[i][j][k] == f[i][j-1][k]) path[i][j][k] = 3;
if(f[i][j][k] == f[i][j][k-1]) path[i][j][k] = 4;
}
}
printf("%d\n", f[lena][lenb][lenc]);
print(lena, lenb, lenc);
return 0;
}
caioj 1073 动态规划入门(三维一边推:最长公共子序列加强版(三串LCS))的更多相关文章
- 动态规划----最长公共子序列(C++实现)
最长公共子序列 题目描述:给定两个字符串s1 s2 … sn和t1 t2 … tm .求出这两个字符串的最长公共子序列的长度.字符串s1 s2 … sn的子序列指可以表示为 … { i1 < i ...
- [Python]最长公共子序列 VS 最长公共子串[动态规划]
前言 由于原微软开源的基于古老的perl语言的Rouge依赖环境实在难以搭建,遂跟着Rouge论文的描述自行实现. Rouge存在N.L.S.W.SU等几大子评估指标.在复现Rouge-L的函数时,便 ...
- caioj 1069 动态规划入门(二维一边推2:顺序对齐)(最长公共子序列拓展总结)
caioj 1068是最长公共子序列裸体,秒过, 就不写博客了 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽 (1) 字符串下标从1开始,因为0用来表示 ...
- 动态规划(一)——最长公共子序列和最长公共子串
注: 最长公共子序列采用动态规划解决,由于子问题重叠,故采用数组缓存结果,保存最佳取值方向.输出结果时,则自顶向下建立二叉树,自底向上输出,则这过程中没有分叉路,结果唯一. 最长公共子串采用参考串方式 ...
- 动态规划 - 最长公共子序列(LCS)
最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称 ...
- CJOJ 2044 【一本通】最长公共子序列(动态规划)
CJOJ 2044 [一本通]最长公共子序列(动态规划) Description 一个给定序列的子序列是在该序列中删去若干元素后得到的序列.确切地说,若给定序列X,则另一序列Z是X的子序列是指存在一个 ...
- LCS问题(最长公共子序列)-动态规划实现
问题描述: 问题] 求两字符序列的最长公共字符子序列 注意: 并不要求子串(字符串一)的字符必须连续出现在字符串二中. 思路分析: 最优子结构和重叠子问题的性质都具有,所以要采取动态规划的算法 最长公 ...
- 动态规划----最长公共子序列(LCS)问题
题目: 求解两个字符串的最长公共子序列.如 AB34C 和 A1BC2 则最长公共子序列为 ABC. 思路分析:可以用dfs深搜,这里使用到了前面没有见到过的双重循环递归.也可以使用动态规划,在建 ...
- 动态规划———最长公共子序列(LCS)
最长公共子序列+sdutoj2080改编: http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/ ...
随机推荐
- 人工智能,你到底是天使or魔鬼?
人工智能的概念早在60多年前就被提出,但又一度沉寂.随着谷歌人工智能程序AlphaGo(阿尔法狗)战胜围棋世界冠军李世石,再次为世人瞩目.然而,与无限风光一起相伴而来的,还有关于人工智能的种种争议! ...
- NodeJS学习笔记 (3)域名解析-dns(ok)
域名解析:dns.lookup() 比如我们要查询域名 www.qq.com 对应的ip,可以通过 dns.lookup() . var dns = require('dns'); dns.looku ...
- How Javascript works (Javascript工作原理) (四) 事件循环及异步编程的出现和 5 种更好的 async/await 编程方式
个人总结: 1.讲解了JS引擎,webAPI与event loop合作的机制. 2.setTimeout是把事件推送给Web API去处理,当时间到了之后才把setTimeout中的事件推入调用栈. ...
- KMP笔记
KMP #include<iostream> #include<cstring> #include<cstdio> #include<cmath> us ...
- 箭头函数的this
定义时所处的对象就是它的this 看外层是否有函数 如果有,外层函数的this就是内部箭头函数的this 如果没有,this就是window let obj = { name : '箭头函数', ge ...
- HDU-1043 Eight八数码 搜索问题(bfs+hash 打表 IDA* 等)
题目链接 https://vjudge.net/problem/HDU-1043 经典的八数码问题,学过算法的老哥都会拿它练搜索 题意: 给出每行一组的数据,每组数据代表3*3的八数码表,要求程序复原 ...
- CF451E Devu and Flowers (组合数学+容斥)
题目大意:给你$n$个箱子,每个箱子里有$a_{i}$个花,你最多取$s$个花,求所有取花的方案,$n<=20$,$s<=1e14$,$a_{i}<=1e12$ 容斥入门题目 把取花 ...
- redhat7.5 升级OpenSSH_7.8p1
1:拷贝编译好rpm安装包 [root@liwm ~]# scp -r root@192.168.31.130:/home/openssh7.8 /home/ root@192.168.31.130' ...
- linux下安装jdk跟tomcat
文章参考 https://www.cnblogs.com/geekdc/p/5607100.html Linux服务器安装jdk+tomcat https://baijiahao.baidu ...
- Java基础学习总结(4)——对象转型
一.对象转型介绍 对象转型分为两种:一种叫向上转型(父类对象的引用或者叫基类对象的引用指向子类对象,这就是向上转型),另一种叫向下转型.转型的意思是:如把float类型转成int类型,把double类 ...