三维的与二维大同小异,看代码。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std; const int MAXN = 112;
char a[MAXN], b[MAXN], c[MAXN];
int f[MAXN][MAXN][MAXN], path[MAXN][MAXN][MAXN]; void print(int x, int y, int z)
{
int t = path[x][y][z];
if(t == 1)
{
print(x - 1, y - 1, z - 1);
putchar(a[x]);
}
else if(t == 2) print(x - 1, y, z);
else if(t == 3) print(x, y - 1, z);
else if(t == 4) print(x, y, z - 1);
} int main()
{
scanf("%s%s%s", a + 1, b + 1, c + 1);
int lena = strlen(a + 1), lenb = strlen(b + 1), lenc = strlen(c + 1); REP(i, 1, lena + 1)
REP(j, 1, lenb + 1)
REP(k, 1, lenc + 1)
{
if(a[i] == b[j] && b[j] == c[k])
{
f[i][j][k] = f[i-1][j-1][k-1] + 1;
path[i][j][k] = 1;
}
else
{
f[i][j][k] = max(f[i-1][j][k], max(f[i][j-1][k], f[i][j][k-1]));
if(f[i][j][k] == f[i-1][j][k]) path[i][j][k] = 2;
if(f[i][j][k] == f[i][j-1][k]) path[i][j][k] = 3;
if(f[i][j][k] == f[i][j][k-1]) path[i][j][k] = 4;
}
}
printf("%d\n", f[lena][lenb][lenc]);
print(lena, lenb, lenc); return 0;
}

caioj 1073 动态规划入门(三维一边推:最长公共子序列加强版(三串LCS))的更多相关文章

  1. 动态规划----最长公共子序列(C++实现)

    最长公共子序列 题目描述:给定两个字符串s1 s2 … sn和t1 t2 … tm .求出这两个字符串的最长公共子序列的长度.字符串s1 s2 … sn的子序列指可以表示为 … { i1 < i ...

  2. [Python]最长公共子序列 VS 最长公共子串[动态规划]

    前言 由于原微软开源的基于古老的perl语言的Rouge依赖环境实在难以搭建,遂跟着Rouge论文的描述自行实现. Rouge存在N.L.S.W.SU等几大子评估指标.在复现Rouge-L的函数时,便 ...

  3. caioj 1069 动态规划入门(二维一边推2:顺序对齐)(最长公共子序列拓展总结)

    caioj 1068是最长公共子序列裸体,秒过, 就不写博客了 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽    (1) 字符串下标从1开始,因为0用来表示 ...

  4. 动态规划(一)——最长公共子序列和最长公共子串

    注: 最长公共子序列采用动态规划解决,由于子问题重叠,故采用数组缓存结果,保存最佳取值方向.输出结果时,则自顶向下建立二叉树,自底向上输出,则这过程中没有分叉路,结果唯一. 最长公共子串采用参考串方式 ...

  5. 动态规划 - 最长公共子序列(LCS)

    最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称 ...

  6. CJOJ 2044 【一本通】最长公共子序列(动态规划)

    CJOJ 2044 [一本通]最长公共子序列(动态规划) Description 一个给定序列的子序列是在该序列中删去若干元素后得到的序列.确切地说,若给定序列X,则另一序列Z是X的子序列是指存在一个 ...

  7. LCS问题(最长公共子序列)-动态规划实现

    问题描述: 问题] 求两字符序列的最长公共字符子序列 注意: 并不要求子串(字符串一)的字符必须连续出现在字符串二中. 思路分析: 最优子结构和重叠子问题的性质都具有,所以要采取动态规划的算法 最长公 ...

  8. 动态规划----最长公共子序列(LCS)问题

    题目: 求解两个字符串的最长公共子序列.如 AB34C 和 A1BC2   则最长公共子序列为 ABC. 思路分析:可以用dfs深搜,这里使用到了前面没有见到过的双重循环递归.也可以使用动态规划,在建 ...

  9. 动态规划———最长公共子序列(LCS)

    最长公共子序列+sdutoj2080改编: http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/ ...

随机推荐

  1. 你不知道的JavaScript(四)数值

    JS中只有一种数值类型,即number.不管是整数还是小数都属于number类型,事实上JS并不区分小数和整数. <div> <script type="text/java ...

  2. Caffe Loss分析

    Caffe_Loss 损失函数为深度学习中重要的一个组成部分,各种优化算法均是基于Loss来的,损失函数的设计好坏很大程度下能够影响最终网络学习的好坏.派生于 \(LossLayer\),根据不同的L ...

  3. div控制最小高度又自适高度

    div控制最小高度又自适高度我们在用div布局的时候经常会遇到这样的一种情况:我们需要设置一个div的高度,当里面的东西超过这个高度时,让这个容器自动被撑开,也就是自适应高度.当里面的信息很少时候,我 ...

  4. 用jQuery设置多个css样式

    $("#show_one").css({"position":"fixed","top":"0px" ...

  5. Object-C,数组NSArray

    晚上回来,写了2个iOS应用程序. 就是在界面中,展示标签.一种是手动构造界面,然后绑定事件.另外一种是,使用自带的界面作为容器,但是手动向里面放其它界面元素. 书中的观点是,使用图形化界面,构造界面 ...

  6. Vue中如何监控某个属性值的变化?

    比如现在需要监控data中, obj.a 的变化.Vue中监控对象属性的变化你可以这样: deep属性表示深层遍历,但是这么写会监控obj的所有属性变化,并不是我们想要的效果,所以做点修改: 还有一种 ...

  7. python如何命令行下载包

    $ wget https://bootstrap.pypa.io/get-pip.py $ python get-pip.py $ pip -V #查看pip版本     $ pip install ...

  8. 在AutoLyout中动态获得cell的高度 和 autoLyout中的小随笔

    autoLyout中动态获得cell的高度和autoLyout小总结 一.在autoLyout中通过动态的方式来获取cell 的方式呢? 1.       在布局时候要有对于cell中contentV ...

  9. Pleasant sheep and big big wolf

    pid=3046">点击打开链接 题目:在一个N * M 的矩阵草原上,分布着羊和狼.每一个格子仅仅能存在0或1仅仅动物.如今要用栅栏将全部的狼和羊分开.问怎么放,栅栏数放的最少,求出 ...

  10. A. Ilya and Diplomas( Codeforces Round #311 (Div. 2) )

    A. Ilya and Diplomas time limit per test 1 second memory limit per test 256 megabytes input standard ...