JOISC 2017 Day1 T3 烟花棒

题意:

​ 数轴上有\(N\)人在放烟花,一开始只有第\(K\)个人的烟花是点燃的,烟花燃烧的时间为\(T\)秒,求让所有人的烟花都可以点燃的速度的最小值。(\(N\leq1e5,T\leq1e9\))。

题解:

​ 好难啊。。。。

​ 肯定是二分答案,现在问题转化为能否覆盖整个区间。一个很显然的结论:如果\([i,j]\)都可以点燃,则满足\(x_j+VT(j-i)\geq x_i-VT(j-i)\)。令\(a[i]=x_i-2VT*i\),则\(a[i]\geq a[j]\)。

​ 现在要求的就是可不可以从\([k,k]\)走到\([1,n]\),贪心即解决。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fo(i,l,r) for(int i=l;i<=r;i++)
#define of(i,l,r) for(int i=l;i>=r;i--)
#define fe(i,u) for(int i=head[u];i;i=e[i].next)
using namespace std;
typedef long long ll;
inline void open(const char *s)
{
    #ifndef ONLINE_JUDGE
    char str[20];
    sprintf(str,"%s.in",s);
    freopen(str,"r",stdin);
//  sprintf(str,"%s.out",s);
//  freopen(str,"w",stdout);
    #endif
}
inline int rd()
{
    static int x,f;
    x=0;f=1;
    char ch=getchar();
    for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
    for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
    return f>0?x:-x;
}
const int N=100010;
int n,K,T,x[N];
ll a[N];

inline bool gao(int V)
{
    fo(i,1,n)a[i]=x[i]-2ll*T*V*i;
    if(a[1]<a[n])return 0;
    int ql=K,qr=K,l,r;
    of(i,K-1,1)if(a[i]>=a[ql])ql=i;
    fo(i,K+1,n)if(a[i]<=a[qr])qr=i;
    l=r=K;
    while(l!=ql||r!=qr){
        bool hh=0;
        int L=l,R=r;
        while(L>ql&&a[L-1]>=a[r])if(a[--L]>=a[l])break;
        if(L<l&&a[L]>=a[l])hh=1,l=L;
        while(R<qr&&a[R+1]<=a[l])if(a[++R]<=a[r])break;
        if(R>r&&a[R]<=a[r])hh=1,r=R;
        if(!hh)return 0;
    }
    l=1;r=n;
    while(l!=ql||r!=qr){
        bool hh=0;
        int L=l,R=r;
        while(L<ql&&a[L+1]>=a[r])if(a[++L]>=a[l])break;
        if(L>l&&a[L]>=a[l])hh=1,l=L;
        while(R>qr&&a[R-1]<=a[l])if(a[--R]<=a[r])break;
        if(R<r&&a[R]<=a[r])hh=1,r=R;
        if(!hh)return 0;
    }
    return 1;
}

int main()
{
    n=rd();K=rd();T=rd();
    fo(i,1,n)x[i]=rd();
    int l=0,r=1000000000,mid,ans=r;
    while(l<=r){
        mid=(l+r)>>1;
        if(gao(mid))ans=mid,r=mid-1;
        else l=mid+1;
    }
    printf("%d\n",ans);
    return 0;
}

JOISC 2017 Day1 T3 烟花棒的更多相关文章

  1. JOISC 2017

    Day1 「JOISC 2017 Day 1」开荒者 首先观察部分分发现分档很多,于是考虑一步步思考上来. 首先有一点关键观察(一): 风吹的顺序是无所谓的,令分别往东.西.南.北吹了 \(r, l, ...

  2. 【NOIP2016】Day1 T3 换教室(期望DP)

    题目背景 NOIP2016 提高组 Day1 T3 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n 节课程安排在 n 个时间段上. ...

  3. 「雅礼集训 2017 Day1」 解题报告

    「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...

  4. [LOJ 6031]「雅礼集训 2017 Day1」字符串

    [LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...

  5. [LOJ 6030]「雅礼集训 2017 Day1」矩阵

    [LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解 ...

  6. [LOJ 6029]「雅礼集训 2017 Day1」市场

    [LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...

  7. 【LOJ】#3032. 「JOISC 2019 Day1」馕

    LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...

  8. 【LOJ】#3031. 「JOISC 2019 Day1」聚会

    LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链 ...

  9. 【LOJ】#3030. 「JOISC 2019 Day1」考试

    LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...

随机推荐

  1. SSD-tensorflow-2 evaluation

    测试就是用voc2007的test set来测试已经训练好的checkpoint的mAP,github上提供了三个已经训练好的model的checkpoint checkpoint 里面已有的300_ ...

  2. MongoDB 的replicattion 复制集练习

              replicattion 相当于 mysql 的主从复制的读写分离,共同维护相同的数据,提高服务器的可用性[假如主(PRIMARY)不能用时,mongo会迅速自动切到从(SECON ...

  3. Git 内部原理 - (1)底层命令和高层命令 (2Git 对象

    文章摘选自git官网,这里复制下来表示我已阅读并学习过一次这些内容: 无论是从之前的章节直接跳到本章,还是读完了其余章节一直到这——你都将在本章见识到 Git 的内部工作原理和实现方式. 我们发现学习 ...

  4. Python学习笔记(1)--Windows基本环境搭建

    1.安装Python 官网下载地址:https://www.python.org/downloads/ 下载完成后安装选择自定义安装,并勾选自动填写环境变量,如果是默认安装,还需要自己手动配置环境变量 ...

  5. 【Codeforces Round #420 (Div. 2) C】Okabe and Boxes

    [题目链接]:http://codeforces.com/contest/821/problem/C [题意] 给你2*n个操作; 包括把1..n中的某一个数压入栈顶,以及把栈顶元素弹出; 保证压入和 ...

  6. 【SRM 717 div2 A】 NiceTable

    Problem Statement You are given a vector t that describes a rectangular table of zeroes and ones. Ea ...

  7. CO-PRIME(初探 莫比乌斯)NYOJ1066(经典)gcd(a,b)=1

    CO-PRIME 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描写叙述 This problem is so easy! Can you solve it? You are ...

  8. Cookie与Session的区别与联系及生命周期

    Cookie与Session的区别与联系及生命周期 一.Session与Cookie介绍 这些都是基础知识,不过有必要做深入了解.先简单介绍一下. 二者的定义: 当你在浏览网站的时候,WEB 服务器会 ...

  9. 关于在天机项目中遇到的常用git 命令

    1. 本地分支和远程分支 1>我们在本地创建分支,第一次push到远程是没有分支存在,执行git push 会有提示,按照提示的内容操作即可,当然我们也可以 git push origin fe ...

  10. POJ - 3842 An Industrial Spy dfs(水)

    题意:给你一串数字,最少一个,最多七个,问用这里面的数字能组成多少素数,不重复. 思路:之前还遍历10000000的每一个素数,结果超时,后来发现直接dfs就可以了,只是标记一下做过的数. #prag ...