P3047 [USACO12FEB]附近的牛Nearby Cows

题目描述

Farmer John has noticed that his cows often move between nearby fields. Taking this into account, he wants to plant enough grass in each of his fields not only for the cows situated initially in that field, but also for cows visiting from nearby fields.

Specifically, FJ's farm consists of N fields (1 <= N <= 100,000), where some pairs of fields are connected with bi-directional trails (N-1 of them in total). FJ has designed the farm so that between any two fields i and j, there is a unique path made up of trails connecting between i and j. Field i is home to C(i) cows, although cows sometimes move to a different field by crossing up to K trails (1 <= K <= 20).

FJ wants to plant enough grass in each field i to feed the maximum number of cows, M(i), that could possibly end up in that field -- that is, the number of cows that can potentially reach field i by following at most K trails. Given the structure of FJ's farm and the value of C(i) for each field i, please help FJ compute M(i) for every field i.

给出一棵n个点的树,每个点上有C_i头牛,问每个点k步范围内各有多少头牛。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers, N and K.

  • Lines 2..N: Each line contains two space-separated integers, i and j (1 <= i,j <= N) indicating that fields i and j are directly connected by a trail.

  • Lines N+1..2N: Line N+i contains the integer C(i). (0 <= C(i) <= 1000)

输出格式:

  • Lines 1..N: Line i should contain the value of M(i).

输入输出样例

输入样例#1:

6 2
5 1
3 6
2 4
2 1
3 2
1
2
3
4
5
6
输出样例#1:

15
21
16
10
8
11

说明

There are 6 fields, with trails connecting (5,1), (3,6), (2,4), (2,1), and (3,2). Field i has C(i) = i cows.

Field 1 has M(1) = 15 cows within a distance of 2 trails, etc.

/*
树形dp:dp[i][j]:编号为i的节点向子节点走0~j步总和
预处理dp[i][j]数组,从当前点向父亲节点转移
容斥原理:ans+=dp[now][k],ans+=dp[father][k-1],ans-=dp[now][k-2] 不懂可手动模拟
*/
#include<iostream>
#include<cstdio>
#include<cstring> #define N 100007
#define M 27 using namespace std;
int w[N],f[N],head[N],dp[N][M];
int n,m,k,cnt;
struct edge
{
int u,to,pre;
}e[N<<]; inline int init()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} inline void add(int u,int to)
{
e[++cnt].to=to;e[cnt].pre=head[u];head[u]=cnt;
} void dfs(int from,int now)
{
f[now]=from;dp[now][]=w[now];
for(int i=head[now];i;i=e[i].pre)
{
if(e[i].to!=from)
{
dfs(now,e[i].to);
for(int j=;j<=k;j++)
dp[now][j]+=dp[e[i].to][j-];
}
}
} void DP(int now)
{
int K=k,ans=;ans=dp[now][k];
while(now!= && K)
{
K--;ans+=dp[f[now]][K];
if(K) ans-=dp[now][K-];
now=f[now];
}
printf("%d\n",ans);
} int main()
{
int x,y;
n=init();k=init();
for(int i=;i<n;i++)
{
x=init();y=init();
add(x,y);add(y,x);
}
for(int i=;i<=n;i++) w[i]=init();
dfs(-,);
for(int i=;i<=n;i++) for(int j=;j<=k;j++)//dfs时dp[i][j]是第i点刚好走j步,现在求前缀和
dp[i][j]+=dp[i][j-];
for(int i=;i<=n;i++) DP(i);
return ;
}

洛谷P3047 [USACO12FEB]Nearby Cows(树形dp)的更多相关文章

  1. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  2. 洛谷 P3047 [USACO12FEB]附近的牛Nearby Cows

    P3047 [USACO12FEB]附近的牛Nearby Cows 题目描述 Farmer John has noticed that his cows often move between near ...

  3. 【bzoj2591】[Usaco 2012 Feb]Nearby Cows 树形dp

    题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...

  4. 洛谷P1040 加分二叉树(树形dp)

    加分二叉树 时间限制: 1 Sec  内存限制: 125 MB提交: 11  解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...

  5. 洛谷P4438 道路 [HNOI/AHOI2018] 树形dp

    正解:树形dp 解题报告: 传送门! 昂首先看懂题目趴QwQ大概就是说有棵满二叉树,有n个叶子节点(乡村)和n-1个非叶子节点,然后这棵树的每个节点有三个属性abc,对每个非叶子节点可以从与子节点的两 ...

  6. 洛谷 P4201 设计路线 [NOI2008] 树形dp

    正解:树形dp 解题报告: 大概是第一道NOI的题目?有点激动嘻嘻 然后先放个传送门 先大概港下这题的题意是啥qwq 大概就是给一棵树,然后可以选若干条链把链上的所有边的边权变成0,但是这些链不能有交 ...

  7. 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)

    题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...

  8. 洛谷P1351 联合权值(树形dp)

    题意 题目链接 Sol 一道很简单的树形dp,然而被我写的这么长 分别记录下距离为\(1/2\)的点数,权值和,最大值.以及相邻儿子之间的贡献. 树形dp一波.. #include<bits/s ...

  9. 洛谷P4099 [HEOI2013]SAO(树形dp)

    传送门 HEOI的题好珂怕啊(各种意义上) 然后考虑树形dp,以大于为例 设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小有关,与实际数值无关) 我们考虑 ...

随机推荐

  1. IF ERRORLEVEL 和 IF %ERRORLEVEL% 区别

      IF ERRORLEVEL 1 ( command )    与  IF %ERRORLEVEL%  LEQ 1 ( command  )  等效 也就是 ERRORLEVEL 1 等效于 &qu ...

  2. java_遍历文件目录

    package util; import java.io.File; import java.io.IOException; //列出File的一些常用操作 public class util { / ...

  3. C# 返回值为 list<T>

    public List<T> test<T>(List<T> EntityList) where T : class { return EntityList; }

  4. P1352 没有上司的舞会——树形DP入门

    P1352 没有上司的舞会 题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员 ...

  5. 第四节:DataFrame属性及方法(下)

  6. STM32学习笔记:读写内部Flash(介绍+附代码)

    一.介绍 首先我们需要了解一个内存映射: stm32的flash地址起始于0x0800 0000,结束地址是0x0800 0000加上芯片实际的flash大小,不同的芯片flash大小不同. RAM起 ...

  7. Linq表达式写法

    Linq表达式,实现按照某个字段排序的简单写法. 做项目的时候遇到的一个简单问题,于是记下来. 列举一个例子: <T> model=new <T>(); 加入model中有要根 ...

  8. JavaWeb+MySql分页封装

    前段时间因为需要所以写一个JavaWeb+MySql的分页封装类,附上代码.技术有限写得不好请多多指教. 1.首先贴上Eneity类 package com.zx.pageUtil; import j ...

  9. 创建RpcEnv

    感觉这篇文章不错 2.1.2.创建RpcEnv -  RpcEndpoint -  RpcEndpointRef val systemName = if (isDriver) driverSystem ...

  10. springCloud学习-服务消费者(Feign)

    1.简介 Feign是一个声明式的伪Http客户端,它使得写Http客户端变得更简单.使用Feign,只需要创建一个接口并注解.它具有可插拔的注解特性,可使用Feign 注解和JAX-RS注解.Fei ...