Classic Quotation

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)

Problem Description
When
online chatting, we can save what somebody said to form his ''Classic
Quotation''. Little Q does this, too. What's more? He even changes the
original words. Formally, we can assume what somebody said as a string S whose length is n. He will choose a continuous substring of S(or choose nothing), and remove it, then merge the remain parts into a complete one without changing order, marked as S′. For example, he might remove ''not'' from the string ''I am not SB.'', so that the new string S′ will be ''I am SB.'', which makes it funnier.

After doing lots of such things, Little Q finds out that string T occurs as a continuous substring of S′ very often.

Now given strings S and T, Little Q has k questions. Each question is, given L and R, Little Q will remove a substring so that the remain parts are S[1..i] and S[j..n], what is the expected times that T occurs as a continuous substring of S′ if he choose every possible pair of (i,j)(1≤i≤L,R≤j≤n) equiprobably? Your task is to find the answer E, and report E×L×(n−R+1) to him.

Note : When counting occurrences, T can overlap with each other.

 
Input
The first line of the input contains an integer C(1≤C≤15), denoting the number of test cases.

In each test case, there are 3 integers n,m,k(1≤n≤50000,1≤m≤100,1≤k≤50000) in the first line, denoting the length of S, the length of T and the number of questions.

In the next line, there is a string S consists of n lower-case English letters.

Then in the next line, there is a string T consists of m lower-case English letters.

In the following k lines, there are 2 integers L,R(1≤L<R≤n) in each line, denoting a question.

 
Output
For each question, print a single line containing an integer, denoting the answer.
 
Sample Input
1
8 5 4
iamnotsb
iamsb
4 7
3 7
3 8
2 7
 
Sample Output
1
1
0
0
 分析:首先,对于某一对(l,r),我们可以求出答案为preg l + suf r,pref l;
   其中preg表示前缀l中T的个数,pref l表示匹配完前缀l指针所在位置,suf r,pref l表示从r开始的后缀中从pref l指针开始匹配得到的T的个数;
   因为要求所有的贡献和,l<=L,r>=R,所以考虑前缀和与后缀和;
   ans=∑​i=1​~L​​∑​j=R~​n​ ​preg​i​​ + suf​j,pref​i​​​​=(n−R+1)preg​L​​+∑​i=0~​m−1​​ s​L,i​​×suf​R,i​​
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <cassert>
#include <ctime>
#define rep(i,m,n) for(i=m;i<=(int)n;i++)
#define mod 998244353
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
#define ls rt<<1
#define rs rt<<1|1
#define all(x) x.begin(),x.end()
const int maxn=5e4+;
const int N=5e4+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qmul(ll p,ll q,ll mo){ll f=;while(q){if(q&)f=(f+p)%mo;p=(p+p)%mo;q>>=;}return f;}
ll qpow(ll p,ll q,ll mo){ll f=;while(q){if(q&)f=qmul(f,p,mo)%mo;p=qmul(p,p,mo)%mo;q>>=;}return f;}
int n,m,k,t,nxt[maxn],nxt1[][];
ll pref[maxn],preg[maxn],s[maxn][],suf[maxn][];
char a[maxn],b[maxn];
void init(char *a,char *b)
{
for(int i=;i<=n;i++)
{
pref[i]=preg[i]=;
for(int j=;j<=m;j++)
{
s[i][j]=suf[i][j]=;
}
}
nxt[]=-;
int j=-;
for(int i=;i<=m;i++)
{
while(!(j==-||b[j]==b[i]))j=nxt[j];
nxt[i+]=++j;
}
j=;
for(int i=;i<n;i++)
{
while(!(j==-||a[i]==b[j]))j=nxt[j];
if(i)preg[i]=preg[i-];
pref[i]=++j;
s[i][j]++;
if(j==m)preg[i]++;
}
for(int i=;i<n;i++)
{
preg[i]+=preg[i-];
for(int j=;j<=m;j++)
{
s[i][j]+=s[i-][j];
}
}
for(int i=;i<=m;i++)
{
for(int j='a';j<='z';j++)
{
int k=i;
while(!(k==-||j==b[k]))k=nxt[k];
nxt1[i][j-'a']=k+;
}
}
for(int i=n-;i>=;i--)
{
for(int j=;j<=m;j++)
{
int tmp=nxt1[j][a[i]-'a'];
suf[i][j]+=suf[i+][tmp];
if(tmp==m)suf[i][j]++;
}
}
for(int i=n-;i>=;i--)
{
for(int j=;j<=m;j++)
{
suf[i][j]+=suf[i+][j];
}
}
}
int main()
{
int i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&k);
scanf("%s%s",a,b);
init(a,b);
while(k--)
{
int x,y;
scanf("%d%d",&x,&y);
ll ret=(n-y+)*preg[x-];
for(int i=;i<=m;i++)
{
ret+=s[x-][i]*suf[y-][i];
}
printf("%lld\n",ret);
}
}
return ;
}

2017 Multi-University Training Contest - Team 4 Classic Quotation的更多相关文章

  1. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. 2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】

    Dying Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  3. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  4. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  5. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  7. 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  8. 2017 Multi-University Training Contest - Team 1 1002&&HDU 6034 Balala Power!【字符串,贪心+排序】

    Balala Power! Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  9. 2017 Multi-University Training Contest - Team 1 1011&&HDU 6043 KazaQ's Socks【规律题,数学,水】

    KazaQ's Socks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

随机推荐

  1. influxdb入门——和mongodb一样可以动态增加字段

    ./influxd [--config yourconfigfile 2> /dev/null]  之所以重定向 因为默认log是stderr 再启动客户端./influx > CREAT ...

  2. CF19 E Fairy——树上差分

    题目:http://codeforces.com/contest/19/problem/E 先把图连成一棵树,然后对于每条非树边,判断它是在奇环中还是偶环中: 把环上的点打上相应的差分标记,并记录有多 ...

  3. PL/SQL编程基础

    1. PL/SQL块的基础结构 DECLARE /* * 定义部分——定义常量.变量.复杂数据类型.游标.用户自定义异常 */ BEGIN /* * 执行部分——PL/SQL语句和SQL语句 */ E ...

  4. Kaka's Matrix Travels

    http://poj.org/problem?id=3422 #include <stdio.h> #include <algorithm> #include <stri ...

  5. 2243: [SDOI2011]染色(树链剖分+线段树)

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 8400  Solved: 3150[Submit][Status ...

  6. 查询分析器执行SQL很快但是ado.net很慢:请为你的SQLparameter设置DbType

    我们都知道,参数化查询可以处理SQL注入,以及提高查询的效率,因为参数化查询会使MSSQL缓存查询的计划. 但是会出现一个问题:有的时候参数化查询比直接拼接sql字符串效率低好多,甚至是查询超时. 原 ...

  7. synchronized关键字详解(二)

    synchronized关键字的性质 1.可重入:同一线程的外层函数获得锁之后,内层函数可直接再次获得该锁,好处:避免死锁,提升封装性 证明可重入粒度:1.同一个方法是可重入的 2.可重入不要求是同一 ...

  8. Laravel5.1学习笔记17 数据库3 数据迁移

    介绍 建立迁移文件 迁移文件结构 执行迁移 回滚迁移 填写迁移文件  创建表 重命名/ 删除表 创建字段 修改字段 删除字段 建立索引 删除索引 外键约束 #介绍 Migrations are lik ...

  9. ElasticSearch-5.21安装

    环境 操作系统:Centos 6.5 X64 IP地址:192.168.56.100 JDK 环境: # java -version java version "1.8.0_121" ...

  10. JS——三元表达式

    三元表达式: var n1 = 2 > 3 ? true : false; alert(n1);//返回false