Classic Quotation

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)

Problem Description
When
online chatting, we can save what somebody said to form his ''Classic
Quotation''. Little Q does this, too. What's more? He even changes the
original words. Formally, we can assume what somebody said as a string S whose length is n. He will choose a continuous substring of S(or choose nothing), and remove it, then merge the remain parts into a complete one without changing order, marked as S′. For example, he might remove ''not'' from the string ''I am not SB.'', so that the new string S′ will be ''I am SB.'', which makes it funnier.

After doing lots of such things, Little Q finds out that string T occurs as a continuous substring of S′ very often.

Now given strings S and T, Little Q has k questions. Each question is, given L and R, Little Q will remove a substring so that the remain parts are S[1..i] and S[j..n], what is the expected times that T occurs as a continuous substring of S′ if he choose every possible pair of (i,j)(1≤i≤L,R≤j≤n) equiprobably? Your task is to find the answer E, and report E×L×(n−R+1) to him.

Note : When counting occurrences, T can overlap with each other.

 
Input
The first line of the input contains an integer C(1≤C≤15), denoting the number of test cases.

In each test case, there are 3 integers n,m,k(1≤n≤50000,1≤m≤100,1≤k≤50000) in the first line, denoting the length of S, the length of T and the number of questions.

In the next line, there is a string S consists of n lower-case English letters.

Then in the next line, there is a string T consists of m lower-case English letters.

In the following k lines, there are 2 integers L,R(1≤L<R≤n) in each line, denoting a question.

 
Output
For each question, print a single line containing an integer, denoting the answer.
 
Sample Input
1
8 5 4
iamnotsb
iamsb
4 7
3 7
3 8
2 7
 
Sample Output
1
1
0
0
 分析:首先,对于某一对(l,r),我们可以求出答案为preg l + suf r,pref l;
   其中preg表示前缀l中T的个数,pref l表示匹配完前缀l指针所在位置,suf r,pref l表示从r开始的后缀中从pref l指针开始匹配得到的T的个数;
   因为要求所有的贡献和,l<=L,r>=R,所以考虑前缀和与后缀和;
   ans=∑​i=1​~L​​∑​j=R~​n​ ​preg​i​​ + suf​j,pref​i​​​​=(n−R+1)preg​L​​+∑​i=0~​m−1​​ s​L,i​​×suf​R,i​​
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <cassert>
#include <ctime>
#define rep(i,m,n) for(i=m;i<=(int)n;i++)
#define mod 998244353
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
#define ls rt<<1
#define rs rt<<1|1
#define all(x) x.begin(),x.end()
const int maxn=5e4+;
const int N=5e4+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qmul(ll p,ll q,ll mo){ll f=;while(q){if(q&)f=(f+p)%mo;p=(p+p)%mo;q>>=;}return f;}
ll qpow(ll p,ll q,ll mo){ll f=;while(q){if(q&)f=qmul(f,p,mo)%mo;p=qmul(p,p,mo)%mo;q>>=;}return f;}
int n,m,k,t,nxt[maxn],nxt1[][];
ll pref[maxn],preg[maxn],s[maxn][],suf[maxn][];
char a[maxn],b[maxn];
void init(char *a,char *b)
{
for(int i=;i<=n;i++)
{
pref[i]=preg[i]=;
for(int j=;j<=m;j++)
{
s[i][j]=suf[i][j]=;
}
}
nxt[]=-;
int j=-;
for(int i=;i<=m;i++)
{
while(!(j==-||b[j]==b[i]))j=nxt[j];
nxt[i+]=++j;
}
j=;
for(int i=;i<n;i++)
{
while(!(j==-||a[i]==b[j]))j=nxt[j];
if(i)preg[i]=preg[i-];
pref[i]=++j;
s[i][j]++;
if(j==m)preg[i]++;
}
for(int i=;i<n;i++)
{
preg[i]+=preg[i-];
for(int j=;j<=m;j++)
{
s[i][j]+=s[i-][j];
}
}
for(int i=;i<=m;i++)
{
for(int j='a';j<='z';j++)
{
int k=i;
while(!(k==-||j==b[k]))k=nxt[k];
nxt1[i][j-'a']=k+;
}
}
for(int i=n-;i>=;i--)
{
for(int j=;j<=m;j++)
{
int tmp=nxt1[j][a[i]-'a'];
suf[i][j]+=suf[i+][tmp];
if(tmp==m)suf[i][j]++;
}
}
for(int i=n-;i>=;i--)
{
for(int j=;j<=m;j++)
{
suf[i][j]+=suf[i+][j];
}
}
}
int main()
{
int i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&k);
scanf("%s%s",a,b);
init(a,b);
while(k--)
{
int x,y;
scanf("%d%d",&x,&y);
ll ret=(n-y+)*preg[x-];
for(int i=;i<=m;i++)
{
ret+=s[x-][i]*suf[y-][i];
}
printf("%lld\n",ret);
}
}
return ;
}

2017 Multi-University Training Contest - Team 4 Classic Quotation的更多相关文章

  1. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. 2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】

    Dying Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  3. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  4. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  5. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  7. 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  8. 2017 Multi-University Training Contest - Team 1 1002&&HDU 6034 Balala Power!【字符串,贪心+排序】

    Balala Power! Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  9. 2017 Multi-University Training Contest - Team 1 1011&&HDU 6043 KazaQ's Socks【规律题,数学,水】

    KazaQ's Socks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

随机推荐

  1. poj3421 X-factor Chains——分解质因数

    题目:http://poj.org/problem?id=3421 好久没有独立A题了...做点水题还是有助于提升自信心的: 这题就是把 x 质因数分解,质因数指数的和 sum 就是最长的长度,因为每 ...

  2. bzoj4753

    bzoj4753 树形dp+01分数规划 这是一个典型的树形背包+01分数规划.看见分数形式最大就应该想到01分数规划. 于是套用分数规划,每次用树形背包检验. 首先这是一棵树,不是一个森林,所以我们 ...

  3. 枚举类enum的values()方法

    value()方法可以将枚举类转变为一个枚举类型的数组,因为枚举中没有下标,我们没有办法通过下标来快速找到需要的枚举类,这时候,转变为数组之后,我们就可以通过数组的下标,来找到我们需要的枚举类.接下来 ...

  4. E20171005-ts

    collapse  n. 垮台; (身体的) 衰弱;              vt. 使倒塌; 使坍塌; 使瓦解;               vi. 崩溃; 倒塌; 折叠; (尤指工作劳累后) 坐 ...

  5. jquery模拟下拉框

    <!DOCTYPE html> <html lang="en"> <head> <title>jquery模拟SELECT框< ...

  6. 基于Spark Streaming预测股票走势的例子(一)

    最近学习Spark Streaming,不知道是不是我搜索的姿势不对,总找不到具体的.完整的例子,一怒之下就决定自己写一个出来.下面以预测股票走势为例,总结了用Spark Streaming开发的具体 ...

  7. 聪明的kk --- 搜索超时

    二话没说上去搜索 , 果不其然 华丽超时 . #include<stdio.h> #include<string.h> #include<math.h> #incl ...

  8. 【Codeforces866E_CF866E】Hex Dyslexia(Structure & DP)

    It's my first time to write a blog in EnglishChinglish, so it may be full of mistakes in grammar. Pr ...

  9. 使用UDEV SCSI规则在Oracle Linux上配置ASM

    对于使用ASM管理的磁盘来说,需要一种能够用于一致性标识磁盘设备及其正确的所属关系和权限的手段.在Linux系统中,可以使用ASMLib来执行这项任务,但是这样做的缺点是在操作系统上增加了额外的一层, ...

  10. vmware workstation 14 黑屏处理方法

    从12升级到14以后,所有老的虚拟系统全部黑屏.进行了一波操作,例如:虚拟机-管理-更改硬件兼容性,选择14.黑屏将加速3D图形勾选去掉:启动,关闭,再勾选上,启动.黑屏将显示器选择为指定监视器,黑屏 ...