Classic Quotation

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)

Problem Description
When
online chatting, we can save what somebody said to form his ''Classic
Quotation''. Little Q does this, too. What's more? He even changes the
original words. Formally, we can assume what somebody said as a string S whose length is n. He will choose a continuous substring of S(or choose nothing), and remove it, then merge the remain parts into a complete one without changing order, marked as S′. For example, he might remove ''not'' from the string ''I am not SB.'', so that the new string S′ will be ''I am SB.'', which makes it funnier.

After doing lots of such things, Little Q finds out that string T occurs as a continuous substring of S′ very often.

Now given strings S and T, Little Q has k questions. Each question is, given L and R, Little Q will remove a substring so that the remain parts are S[1..i] and S[j..n], what is the expected times that T occurs as a continuous substring of S′ if he choose every possible pair of (i,j)(1≤i≤L,R≤j≤n) equiprobably? Your task is to find the answer E, and report E×L×(n−R+1) to him.

Note : When counting occurrences, T can overlap with each other.

 
Input
The first line of the input contains an integer C(1≤C≤15), denoting the number of test cases.

In each test case, there are 3 integers n,m,k(1≤n≤50000,1≤m≤100,1≤k≤50000) in the first line, denoting the length of S, the length of T and the number of questions.

In the next line, there is a string S consists of n lower-case English letters.

Then in the next line, there is a string T consists of m lower-case English letters.

In the following k lines, there are 2 integers L,R(1≤L<R≤n) in each line, denoting a question.

 
Output
For each question, print a single line containing an integer, denoting the answer.
 
Sample Input
1
8 5 4
iamnotsb
iamsb
4 7
3 7
3 8
2 7
 
Sample Output
1
1
0
0
 分析:首先,对于某一对(l,r),我们可以求出答案为preg l + suf r,pref l;
   其中preg表示前缀l中T的个数,pref l表示匹配完前缀l指针所在位置,suf r,pref l表示从r开始的后缀中从pref l指针开始匹配得到的T的个数;
   因为要求所有的贡献和,l<=L,r>=R,所以考虑前缀和与后缀和;
   ans=∑​i=1​~L​​∑​j=R~​n​ ​preg​i​​ + suf​j,pref​i​​​​=(n−R+1)preg​L​​+∑​i=0~​m−1​​ s​L,i​​×suf​R,i​​
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <cassert>
#include <ctime>
#define rep(i,m,n) for(i=m;i<=(int)n;i++)
#define mod 998244353
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
#define ls rt<<1
#define rs rt<<1|1
#define all(x) x.begin(),x.end()
const int maxn=5e4+;
const int N=5e4+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qmul(ll p,ll q,ll mo){ll f=;while(q){if(q&)f=(f+p)%mo;p=(p+p)%mo;q>>=;}return f;}
ll qpow(ll p,ll q,ll mo){ll f=;while(q){if(q&)f=qmul(f,p,mo)%mo;p=qmul(p,p,mo)%mo;q>>=;}return f;}
int n,m,k,t,nxt[maxn],nxt1[][];
ll pref[maxn],preg[maxn],s[maxn][],suf[maxn][];
char a[maxn],b[maxn];
void init(char *a,char *b)
{
for(int i=;i<=n;i++)
{
pref[i]=preg[i]=;
for(int j=;j<=m;j++)
{
s[i][j]=suf[i][j]=;
}
}
nxt[]=-;
int j=-;
for(int i=;i<=m;i++)
{
while(!(j==-||b[j]==b[i]))j=nxt[j];
nxt[i+]=++j;
}
j=;
for(int i=;i<n;i++)
{
while(!(j==-||a[i]==b[j]))j=nxt[j];
if(i)preg[i]=preg[i-];
pref[i]=++j;
s[i][j]++;
if(j==m)preg[i]++;
}
for(int i=;i<n;i++)
{
preg[i]+=preg[i-];
for(int j=;j<=m;j++)
{
s[i][j]+=s[i-][j];
}
}
for(int i=;i<=m;i++)
{
for(int j='a';j<='z';j++)
{
int k=i;
while(!(k==-||j==b[k]))k=nxt[k];
nxt1[i][j-'a']=k+;
}
}
for(int i=n-;i>=;i--)
{
for(int j=;j<=m;j++)
{
int tmp=nxt1[j][a[i]-'a'];
suf[i][j]+=suf[i+][tmp];
if(tmp==m)suf[i][j]++;
}
}
for(int i=n-;i>=;i--)
{
for(int j=;j<=m;j++)
{
suf[i][j]+=suf[i+][j];
}
}
}
int main()
{
int i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&k);
scanf("%s%s",a,b);
init(a,b);
while(k--)
{
int x,y;
scanf("%d%d",&x,&y);
ll ret=(n-y+)*preg[x-];
for(int i=;i<=m;i++)
{
ret+=s[x-][i]*suf[y-][i];
}
printf("%lld\n",ret);
}
}
return ;
}

2017 Multi-University Training Contest - Team 4 Classic Quotation的更多相关文章

  1. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. 2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】

    Dying Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  3. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  4. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  5. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  7. 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  8. 2017 Multi-University Training Contest - Team 1 1002&&HDU 6034 Balala Power!【字符串,贪心+排序】

    Balala Power! Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  9. 2017 Multi-University Training Contest - Team 1 1011&&HDU 6043 KazaQ's Socks【规律题,数学,水】

    KazaQ's Socks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

随机推荐

  1. puppet开源的软件自动化配置和部署工具——本质就是CS,服务端统一管理配置

    1.  概述 puppet是一个开源的软件自动化配置和部署工具,它使用简单且功能强大,正得到了越来越多地关注,现在很多大型IT公司均在使用puppet对集群中的软件进行管理和部署,如google利用p ...

  2. jsp ajax 数据库Demo

    转自:http://blog.csdn.net/rushkid02/article/details/7515058 下面介绍JSP前台表单内容通过Ajax异步提交到后台Servlet进行校验(校验方式 ...

  3. bzoj 1453 双面棋盘

    题目大意: 一个黑白方格图 支持单点修改 查询黑色与白色联通快个数 思路: 可以把每一行压为一个点 使用线段树来维护 然后两行合并的时候使用并查集来合并 #include<iostream> ...

  4. 洛谷[USACO06JAN]把牛Corral the Cows

    题目描述 约翰打算建一个围栏来圈养他的奶牛.作为最挑剔的兽类,奶牛们要求这个围栏必须是正方 形的,而且围栏里至少要有C< 500)个草场,来供应她们的午餐. 约翰的土地上共有C<=N< ...

  5. JSP-Runoob:JSP 生命周期

    ylbtech-JSP-Runoob:JSP 生命周期 1.返回顶部 1. JSP 生命周期 理解JSP底层功能的关键就是去理解它们所遵守的生命周期. JSP生命周期就是从创建到销毁的整个过程,类似于 ...

  6. Android 数据库

    官方文档:https://developer.android.com/training/basics/data-storage/databases.html#WriteDbRow 原帖:http:// ...

  7. 搭建Git服务器(转载)

    转自:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/00137583770360 ...

  8. hibernate基础简单入门1---helloword

    1:目录结果 2:实体类(student.java) package com.www.entity; public class Student { private int id; private St ...

  9. [Apple开发者帐户帮助]九、参考(2)撤销特权

    您可以撤消的证书取决于证书类型和您的角色.如果您是个人注册,则可以撤销所有类型的开发和分发证书,除非另有说明.组织团队的任何成员都可以撤销自己的开发证书,但只有帐户持有人或管理员可以撤销分发证书. 证 ...

  10. 康少带你玩转CSS-1

    什么是CSS? 层叠样式表(假如HTML是一个人的话,css就是一个人的装饰品,比如裙子,衣服口红) 用来干什么的 设置标签样式的 css注释 单行注释/**/ 多行注释 /* */ 语法结构 三种引 ...