Classic Quotation

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)

Problem Description
When
online chatting, we can save what somebody said to form his ''Classic
Quotation''. Little Q does this, too. What's more? He even changes the
original words. Formally, we can assume what somebody said as a string S whose length is n. He will choose a continuous substring of S(or choose nothing), and remove it, then merge the remain parts into a complete one without changing order, marked as S′. For example, he might remove ''not'' from the string ''I am not SB.'', so that the new string S′ will be ''I am SB.'', which makes it funnier.

After doing lots of such things, Little Q finds out that string T occurs as a continuous substring of S′ very often.

Now given strings S and T, Little Q has k questions. Each question is, given L and R, Little Q will remove a substring so that the remain parts are S[1..i] and S[j..n], what is the expected times that T occurs as a continuous substring of S′ if he choose every possible pair of (i,j)(1≤i≤L,R≤j≤n) equiprobably? Your task is to find the answer E, and report E×L×(n−R+1) to him.

Note : When counting occurrences, T can overlap with each other.

 
Input
The first line of the input contains an integer C(1≤C≤15), denoting the number of test cases.

In each test case, there are 3 integers n,m,k(1≤n≤50000,1≤m≤100,1≤k≤50000) in the first line, denoting the length of S, the length of T and the number of questions.

In the next line, there is a string S consists of n lower-case English letters.

Then in the next line, there is a string T consists of m lower-case English letters.

In the following k lines, there are 2 integers L,R(1≤L<R≤n) in each line, denoting a question.

 
Output
For each question, print a single line containing an integer, denoting the answer.
 
Sample Input
1
8 5 4
iamnotsb
iamsb
4 7
3 7
3 8
2 7
 
Sample Output
1
1
0
0
 分析:首先,对于某一对(l,r),我们可以求出答案为preg l + suf r,pref l;
   其中preg表示前缀l中T的个数,pref l表示匹配完前缀l指针所在位置,suf r,pref l表示从r开始的后缀中从pref l指针开始匹配得到的T的个数;
   因为要求所有的贡献和,l<=L,r>=R,所以考虑前缀和与后缀和;
   ans=∑​i=1​~L​​∑​j=R~​n​ ​preg​i​​ + suf​j,pref​i​​​​=(n−R+1)preg​L​​+∑​i=0~​m−1​​ s​L,i​​×suf​R,i​​
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <cassert>
#include <ctime>
#define rep(i,m,n) for(i=m;i<=(int)n;i++)
#define mod 998244353
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
#define ls rt<<1
#define rs rt<<1|1
#define all(x) x.begin(),x.end()
const int maxn=5e4+;
const int N=5e4+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qmul(ll p,ll q,ll mo){ll f=;while(q){if(q&)f=(f+p)%mo;p=(p+p)%mo;q>>=;}return f;}
ll qpow(ll p,ll q,ll mo){ll f=;while(q){if(q&)f=qmul(f,p,mo)%mo;p=qmul(p,p,mo)%mo;q>>=;}return f;}
int n,m,k,t,nxt[maxn],nxt1[][];
ll pref[maxn],preg[maxn],s[maxn][],suf[maxn][];
char a[maxn],b[maxn];
void init(char *a,char *b)
{
for(int i=;i<=n;i++)
{
pref[i]=preg[i]=;
for(int j=;j<=m;j++)
{
s[i][j]=suf[i][j]=;
}
}
nxt[]=-;
int j=-;
for(int i=;i<=m;i++)
{
while(!(j==-||b[j]==b[i]))j=nxt[j];
nxt[i+]=++j;
}
j=;
for(int i=;i<n;i++)
{
while(!(j==-||a[i]==b[j]))j=nxt[j];
if(i)preg[i]=preg[i-];
pref[i]=++j;
s[i][j]++;
if(j==m)preg[i]++;
}
for(int i=;i<n;i++)
{
preg[i]+=preg[i-];
for(int j=;j<=m;j++)
{
s[i][j]+=s[i-][j];
}
}
for(int i=;i<=m;i++)
{
for(int j='a';j<='z';j++)
{
int k=i;
while(!(k==-||j==b[k]))k=nxt[k];
nxt1[i][j-'a']=k+;
}
}
for(int i=n-;i>=;i--)
{
for(int j=;j<=m;j++)
{
int tmp=nxt1[j][a[i]-'a'];
suf[i][j]+=suf[i+][tmp];
if(tmp==m)suf[i][j]++;
}
}
for(int i=n-;i>=;i--)
{
for(int j=;j<=m;j++)
{
suf[i][j]+=suf[i+][j];
}
}
}
int main()
{
int i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&m,&k);
scanf("%s%s",a,b);
init(a,b);
while(k--)
{
int x,y;
scanf("%d%d",&x,&y);
ll ret=(n-y+)*preg[x-];
for(int i=;i<=m;i++)
{
ret+=s[x-][i]*suf[y-][i];
}
printf("%lld\n",ret);
}
}
return ;
}

2017 Multi-University Training Contest - Team 4 Classic Quotation的更多相关文章

  1. 2017 Multi-University Training Contest - Team 9 1005&&HDU 6165 FFF at Valentine【强联通缩点+拓扑排序】

    FFF at Valentine Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. 2017 Multi-University Training Contest - Team 9 1004&&HDU 6164 Dying Light【数学+模拟】

    Dying Light Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Tot ...

  3. 2017 Multi-University Training Contest - Team 9 1003&&HDU 6163 CSGO【计算几何】

    CSGO Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  4. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  5. 2017 Multi-University Training Contest - Team 9 1001&&HDU 6161 Big binary tree【树形dp+hash】

    Big binary tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  7. 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  8. 2017 Multi-University Training Contest - Team 1 1002&&HDU 6034 Balala Power!【字符串,贪心+排序】

    Balala Power! Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  9. 2017 Multi-University Training Contest - Team 1 1011&&HDU 6043 KazaQ's Socks【规律题,数学,水】

    KazaQ's Socks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

随机推荐

  1. C# MySql 连接

    1.将MySql.Data.dll引用到你的项目中 右键工程去完成. 2.using MySql.Data;  using MySql.Data.MySqlClient; 3. MySqlConnec ...

  2. 【转载】[Oracle] Linux下手动创建数据库过程

    今天发现一个Oracle测试库的字符集设置不正确,原本的字符集是UTF-8,正确的字符集应该是ZHS16GBK,因为UTF-8是ZHS16GBK的超集,无法修改,只能重建数据库,幸好该测试库上还没有数 ...

  3. Vue 页面回退参数被当作字符串处理

    当时情景是这样的,我从A页面跳到B页面时会传一个Boolean类型的参数,当B跳到C,再从C返回B的时候,控制台打印发现参数还在,可是判断怎么都不起作用,后来发现,当页面返回的时候,默认将参数变成了字 ...

  4. 【洛谷2982】[Usaco2010 Feb]慢下来Slowdown(dfs序+线段树)

    题目: 洛谷2982 分析: 这道题最重要的是想明白一点:牛\(i\)走到以后只对\(P_i\)的子树产生影响 知道这个以后,就可以想到在线维护每个牧场已经被"影响"了多少次(也就 ...

  5. 题解报告:hdu 2647 Reward(拓扑排序)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2647 Problem Description Dandelion's uncle is a boss ...

  6. 关于jquery $.browser 报错问题

    在调用 jquery 插件时,出现$.browser 报错,原来是jQuery 从 1.9 版开始,移除了 $.browser 和 $.browser.version 等属性, 取而代之的是 $.su ...

  7. html5——3D案例(立方体)

    立方体:父盒子规定了3d呈现属性,立方体做旋转运动 移动顺序:1.每个盒子都先移动100px,然后再做相应的旋转  2.只有这样立方体的几何中心点与父盒子的几何中心点是一样的 <!DOCTYPE ...

  8. html5——DOM扩展

    元素获取 1.document.getElementsByClassName ('class') 通过类名获取元素,以类数组形式存在. 2.document.querySelector(‘div’) ...

  9. java 操作clob

    之前在学校的时候做的都是练习,小儿科,遇到的情况完全都在自己的设想范围内.最近老是遇到字段溢出的情况,但是varchar2好像最长也只有4000个字符.所以不得不另辟蹊径,就找上了clob字段. pa ...

  10. OpenGL第23-26小结

    到后面代码相对而言比较复杂了,因为没有系统的看红宝书(就跟字典一样,兴趣缺缺),很多操作的步骤比较迷糊. 23讲讲解了如何将环境纹理贴在球体.圆柱体等非矩形物体表面,从而达到一个反射周围景色的效果(恩 ...