Codefroces 849 A,B
1 second
256 megabytes
standard input
standard output
Where do odds begin, and where do they end? Where does hope emerge, and will they ever break?
Given an integer sequence a1, a2, ..., an of length n. Decide whether it is possible to divide it into an odd number of non-empty subsegments, the each of which has an odd length and begins and ends with odd numbers.
A subsegment is a contiguous slice of the whole sequence. For example, {3, 4, 5} and {1} are subsegments of sequence {1, 2, 3, 4, 5, 6}, while {1, 2, 4} and {7} are not.
The first line of input contains a non-negative integer n (1 ≤ n ≤ 100) — the length of the sequence.
The second line contains n space-separated non-negative integers a1, a2, ..., an (0 ≤ ai ≤ 100) — the elements of the sequence.
Output "Yes" if it's possible to fulfill the requirements, and "No" otherwise.
You can output each letter in any case (upper or lower).
3
1 3 5
Yes
5
1 0 1 5 1
Yes
3
4 3 1
No
4
3 9 9 3
No
In the first example, divide the sequence into 1 subsegment: {1, 3, 5} and the requirements will be met.
In the second example, divide the sequence into 3 subsegments: {1, 0, 1}, {5}, {1}.
In the third example, one of the subsegments must start with 4 which is an even number, thus the requirements cannot be met.
In the fourth example, the sequence can be divided into 2 subsegments: {3, 9, 9}, {3}, but this is not a valid solution because 2 is an even number.
拆分序列,序列个数不能为偶数,每个子序元素个数不能为偶数,每个子序列不能以偶数开头或结尾。
特判开头结尾,判断n即可。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.141592653589793238462
#define ios() ios::sync_with_stdio(false)
#define INF 1044266558
#define mem(a) (memset(a,0,sizeof(a)))
typedef long long ll;
int a[],n;
int main()
{
scanf("%d",&n);
a[]=;
int ans=;
bool flag=true;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
if((i==n && a[i]%==) ||(i== && a[i]%==)) flag=false;
if(a[i]&) ans++;
else
{
if(a[i-]&) a[i]=,ans++;
}
}
if(ans%==) flag=false;
puts(flag?"Yes":"No");
return 0;
}
1 second
256 megabytes
standard input
standard output
Connect the countless points with lines, till we reach the faraway yonder.
There are n points on a coordinate plane, the i-th of which being (i, yi).
Determine whether it's possible to draw two parallel and non-overlapping lines, such that every point in the set lies on exactly one of them, and each of them passes through at least one point in the set.
The first line of input contains a positive integer n (3 ≤ n ≤ 1 000) — the number of points.
The second line contains n space-separated integers y1, y2, ..., yn ( - 109 ≤ yi ≤ 109) — the vertical coordinates of each point.
Output "Yes" (without quotes) if it's possible to fulfill the requirements, and "No" otherwise.
You can print each letter in any case (upper or lower).
5
7 5 8 6 9
Yes
5
-1 -2 0 0 -5
No
5
5 4 3 2 1
No
5
1000000000 0 0 0 0
Yes
In the first example, there are five points: (1, 7), (2, 5), (3, 8), (4, 6) and (5, 9). It's possible to draw a line that passes through points 1, 3, 5, and another one that passes through points 2, 4 and is parallel to the first one.
In the second example, while it's possible to draw two lines that cover all points, they cannot be made parallel.
In the third example, it's impossible to satisfy both requirements at the same time.
找两条斜率相等地直线,使得这些点全在直线上。并且每条直线上至少包含一个点。
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.141592653589793238462
#define ios() ios::sync_with_stdio(false)
#define INF 1044266558
#define mem(a) (memset(a,0,sizeof(a)))
typedef long long ll;
int a[],n,vis[];
double k1,k2;
int main()
{
scanf("%d",&n);
bool flag=false;
int pos=;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
if(a[i]-==) pos++;
}
if(pos==n-) flag=true;
for(int i=;i<=n;i++)
{
memset(vis,,sizeof(vis));
vis[]=,vis[i]=;
k1=((a[i]-a[])*(1.0))/((i-)*1.0);
int ans=;
for(int j=;j<=n;j++)
{
if(((a[j]-a[])*(1.0))/((j-)*1.0)==k1) vis[j]=,ans++;
}
int ok=,xx=-;
for(int j=;j<=n;j++)
{
if(vis[j]== && ok==) xx=j,ok++;
else if(ok== && vis[j]==) k2=((a[j]-a[xx])*(1.0))/((j-xx)*1.0),ok++;
else if(ok>= && vis[j]==)
{
if(((a[j]-a[xx])*(1.0))/((j-xx)*1.0)==k2) ok++;
}
}
if((ans+ok==n && ok && k1==k2) || ans==n- || ok==n-) flag=true;
if(ans==n || ok==n)
{
flag=false;
goto k;
}
}
k:puts(flag?"Yes":"No");
return ;
}
Codefroces 849 A,B的更多相关文章
- AOJ.849 分数 (暴力)
AOJ.849 分数 (暴力) 题意分析 每次枚举分子,然后根据给出的分数值,推算出来分母,然后取分母上下几个数进行进一步计算,看看哪个更接近. 一开始想着直接枚举分子和分母,复杂度爆炸... 代码总 ...
- 【LEETCODE】52、数组分类,简单级别,题目:717,661,746,628,643,849
package y2019.Algorithm.array; /** * @ProjectName: cutter-point * @Package: y2019.Algorithm.array * ...
- 【Leetcode_easy】849. Maximize Distance to Closest Person
problem 849. Maximize Distance to Closest Person solution1: class Solution { public: int maxDistToCl ...
- 849. Maximize Distance to Closest Person ——weekly contest 87
849. Maximize Distance to Closest Person 题目链接:https://leetcode.com/problems/maximize-distance-to-clo ...
- Codefroces 1328E Tree Querie(dfs序)
Codefroces 1328E Tree Querie 题目 给出一棵1为根,n个节点的树,每次询问\(k_i\) 个节点,问是否存在这样一条路径: 从根出发,且每个节点在这条路径上或者距离路径的距 ...
- ACM - 最短路 - AcWing 849 Dijkstra求最短路 I
AcWing 849 Dijkstra求最短路 I 题解 以此题为例介绍一下图论中的最短路算法.先让我们考虑以下问题: 给定一个 \(n\) 个点 \(m\) 条边的有向图(无向图),图中可能存在重边 ...
- Codefroces 750D:New Year and Fireworks(BFS)
http://codeforces.com/contest/750/problem/D 题意:烟花会绽放n次,每次会向前推进t[i]格,每次绽放会向左右45°绽放,问有烟花的格子数. 思路:n = 3 ...
- Codefroces 750C:New Year and Rating(思维)
http://codeforces.com/contest/750/problem/C 题意:有n场比赛,每场比赛有一个c,代表比赛结束后分数的增长情况,有一个d,代表这场比赛在div1或者div2打 ...
- codefroces 589A
time limit per testsecondsmemory limit per testmegabytesinputstandard inputoutputstandard outputPoly ...
随机推荐
- Noip-pj2018游记
2019/1/3 搬运于我的luogu博客 2018/10/9 没有去试机,在学校搞文化课去了.准考证是让学校的信息课老师帮我拿的 回家后随手A了P1198 P3870 P2846 P1531 感觉真 ...
- WPF 列表自动换行
原文:WPF 列表自动换行 本文告诉大家如何在 ListView 或 ListBox 使用 WrapPanel 让里面的控件自动换行 在 WPF 可以通过修改 ItemsPanel 设置使用不同的 I ...
- Linux的硬链接、软连接与拷贝
Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link).硬链接:创建一个与原文件任何信息都相同的目标文件(文件名可能不同,自由设定).硬连接的 ...
- Maven项目的坐标GroupId和ArtifactId
GroupId和ArtifactId被统称为“坐标”是为了保证项目唯一性而提出的,如果你要把你项目弄到maven本地仓库去,你想要找到你的项目就必须根据这两个id去查找. GroupId一 ...
- Linux 环境下/etc/profile和/etc/profile.d 的区别
Linux 环境下/etc/profile和/etc/profile.d 的区别 区别: 1. 两个文件都是设置环境变量文件的,/etc/profile是永久性的环境变量,是全局变量,/etc/pro ...
- How to enable wire logging for a java HttpURLConnection traffic?
https://stackoverflow.com/questions/1445919/how-to-enable-wire-logging-for-a-java-httpurlconnection- ...
- [MST] Test mobx-state-tree Models by Recording Snapshots or Patches
Testing models is straightforward. Especially because MST provides powerful tools to track exactly h ...
- bzoj1430: 小猴打架(prufer序列)
1430: 小猴打架 题目:传送门 简要题意: n只互不相识的猴子打架,打架之后就两两之间连边(表示已经相互认识),只有不认识(朋友的朋友都是朋友)的两只猴子才会打架.最后所有的猴子都会连成一棵树,也 ...
- 什么是SVN(Subversion)? 为什么要用SVN? (2011-09-05 15:09:47) 转载 ▼
转自:http://blog.sina.com.cn/s/blog_54ccd3500100tkvo.html 什么是SVN(Subversion)? 有一个简单但不十分精确比喻: SVN = 版本控 ...
- ORM中基于对象查询与基于queryset查询
感谢老男孩~ 一步一步走下去 前面是视图函数 后面是表结构models.py from django.shortcuts import render, HttpResponse from djang ...