gcd和

题目

GCD sum

公约数的和

大意是让你求1-n任意两个数的gcd的和之类的。

解法

显然你需要枚举对吧,不然你怎么可能求出gcd呢?

其次我们需要一些数学推理

令F(n)表示\(\sum_{i=1}^{n}gcd(1,n)\)

则我们只需要求出\(2\times \sum_{i=1}^{n}F(i) + \sum_{i=1}^{n}i\)对吧。

那么成立的充要条件是\(gcd(a/d,b/d)=1\),则我们就知道\(gcd(a/d,b/d)*d=gcd(a,b)\)

那么所以我们需要求出有多少个1-n/d的互质的数,显然这就是欧拉函数

所以我们就有了如下两道题目代码

//code 1
#include<bits/stdc++.h>
#define int long long //还是自觉换long long 更好吧
using namespace std;
const int maxn=100000+5;
int phi[maxn];
int f[maxn];
int s[maxn];
void get(int n) {
for(int i=2; i<=n; i++) phi[i]=0;
phi[1]=1;
for(int i=2; i<=n; i++) {
if(!phi[i]) {
for(int j=i; j<=n; j+=i) {
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
}
main() {
int n;
cin>>n;
get(n);
for(int i=1; i<=n; i++)
for(int j=i*2; j<=n; j+=i)
f[j]+=i*phi[j/i];
for(int i=1; i<=n; i++) s[i]=s[i-1]+f[i];
cout<<s[n]*2+(1+n)*n/2;
return 0;
}
//code 2
#include<bits/stdc++.h>
#define int long long //还是自觉换long long 更好吧
using namespace std;
const int maxn=2000000+5;
int phi[maxn];
int f[maxn];
int s[maxn];
void get(int n) {
for(int i=2; i<=n; i++) phi[i]=0;
phi[1]=1;
for(int i=2; i<=n; i++) {
if(!phi[i]) {
for(int j=i; j<=n; j+=i) {
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
}
main() {
int n;
cin>>n;
get(n);
for(int i=1; i<=n; i++)
for(int j=i*2; j<=n; j+=i)
f[j]+=i*phi[j/i];
for(int i=1; i<=n; i++) s[i]=s[i-1]+f[i];
cout<<s[n];
return 0;
}

关于1-n任意的gcd的和的更多相关文章

  1. 数字任意组合 - gcd

    链接:https://www.nowcoder.com/acm/contest/160/A来源:牛客网 题目描述有一个计数器,计数器的初始值为0,每次操作你可以把计数器的值加上a1,a2,...,an ...

  2. ReactiveCocoa基础知识内容

    本文记录一些关于学习ReactiveCocoa基础知识内容,对于ReactiveCocoa相关的概念如果不了解可以网上搜索:RACSignal有很多方法可以来订阅不同的事件类型,ReactiveCoc ...

  3. ReactiveCocoa v2.5 源码解析 之 架构总览

    ReactiveCocoa 是一个 iOS 中的函数式响应式编程框架,它受 Functional Reactive Programming 的启发,是 Justin Spahr-Summers 和 J ...

  4. ReactiveCocoa_v2.5 源码解析之架构总览

    ReactiveCocoa 是一个 iOS 中的函数式响应式编程框架,它受 Functional Reactive Programming 的启发,是 Justin Spahr-Summers 和 J ...

  5. [codeforces 804F. Fake bullions]

    题目大意: 传送门. 给一个n个点的有向完全图(即任意两点有且仅有一条有向边). 每一个点上有$S_i$个人,开始时其中有些人有真金块,有些人没有金块.当时刻$i$时,若$u$到$v$有边,若$u$中 ...

  6. 长沙理工校赛I题题解-连续区间的最大公约数

    题目来源https://www.nowcoder.com/acm/contest/96/I 解题前们需要先知道几个结论: 首先,gcd是有区单调性的: gcd(L,R)>=gcd(L,R+d)  ...

  7. iOS ReactiveCocoa 最全常用API整理(可做为手册查询)

    本文适合有一定RAC基础的童鞋做不时的查询,所以本文不做详细解释. 一.常见类 1.RACSiganl 信号类. RACEmptySignal :空信号,用来实现 RACSignal 的 +empty ...

  8. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

  9. 积性函数初步(欧拉$\varphi$函数)

    updata on 2020.4.3 添加了欧拉\(\varphi\)函数为积性函数的证明和它的计算方式 1.积性函数 设\(f(n)\)为定义在正整数上的函数,若\(f(1)=1\),且对于任意正整 ...

随机推荐

  1. Bin文件

    那什么是bin文件呢?为什么这么关键? bin (binary)既是:二进制, 里面存放的一般是可执行的二进制文件.二进制即是机器代码,汇编语言编译后的结果.我们编译的是高级语言,把高级语言翻译为机器 ...

  2. (转)RabbitMQ学习之spring整合发送异步消息(注解实现)

    http://blog.csdn.net/zhu_tianwei/article/details/40919249 实现使用Exchange类型为DirectExchange. routingkey的 ...

  3. sql_1

    order by SELECT Company, OrderNumber FROM Orders ORDER BY Company DESC; SELECT Company, OrderNumber ...

  4. Discuz 3x 配置问题

    1.注意config里面配置的路径 2.注意ucenter里面 的密钥要一直 3.IP 的选择

  5. python编写简单的html登陆页面(1)

    1  html 打开调式效果如下 2  用python后台编写 # coding:utf-8# 从同一个位置导入多个工具,# 这些工具之间可以用逗号隔开,同时导入# render_template渲染 ...

  6. 【Java编程】volatile和transient关键字的理解

    理解volatile   volatile是java提供的一种轻量级的同步机制,所谓轻量级,是相对于synchronized(重量级锁,开销比较大)而言的.   根据java虚拟机的内存模型,我们知道 ...

  7. pywinauto进阶练习

    case1.画图工具简单练习 #_*_coding=utf-8_*_ import time from pprint import pprint import logging from logging ...

  8. [2018.8.12]模拟赛B组

    T1 打表出奇迹,发现结论为\(E(a_n)=n+1\)即可. #include <iostream> #include <cstdio> #include <cctyp ...

  9. Django 中Admin站点的配置

    Admin站点是django提供的一个后台管理页面,可以用来对用户与数据库表数据进行管理. Admin站点配置流程 1.在settings.py文件中INSTALL_APPS列表中添加django.c ...

  10. Python爬虫基础--分布式爬取贝壳网房屋信息(Client)

    1. client_code01 2. client_code02 3. 这个时候运行多个client就可以分布式进行数据爬取.