关于1-n任意的gcd的和
gcd和
题目
GCD sum
公约数的和
大意是让你求1-n任意两个数的gcd的和之类的。
解法
显然你需要枚举对吧,不然你怎么可能求出gcd呢?
其次我们需要一些数学推理
令F(n)表示\(\sum_{i=1}^{n}gcd(1,n)\)
则我们只需要求出\(2\times \sum_{i=1}^{n}F(i) + \sum_{i=1}^{n}i\)对吧。
那么成立的充要条件是\(gcd(a/d,b/d)=1\),则我们就知道\(gcd(a/d,b/d)*d=gcd(a,b)\)
那么所以我们需要求出有多少个1-n/d的互质的数,显然这就是欧拉函数
所以我们就有了如下两道题目代码
//code 1
#include<bits/stdc++.h>
#define int long long //还是自觉换long long 更好吧
using namespace std;
const int maxn=100000+5;
int phi[maxn];
int f[maxn];
int s[maxn];
void get(int n) {
for(int i=2; i<=n; i++) phi[i]=0;
phi[1]=1;
for(int i=2; i<=n; i++) {
if(!phi[i]) {
for(int j=i; j<=n; j+=i) {
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
}
main() {
int n;
cin>>n;
get(n);
for(int i=1; i<=n; i++)
for(int j=i*2; j<=n; j+=i)
f[j]+=i*phi[j/i];
for(int i=1; i<=n; i++) s[i]=s[i-1]+f[i];
cout<<s[n]*2+(1+n)*n/2;
return 0;
}
//code 2
#include<bits/stdc++.h>
#define int long long //还是自觉换long long 更好吧
using namespace std;
const int maxn=2000000+5;
int phi[maxn];
int f[maxn];
int s[maxn];
void get(int n) {
for(int i=2; i<=n; i++) phi[i]=0;
phi[1]=1;
for(int i=2; i<=n; i++) {
if(!phi[i]) {
for(int j=i; j<=n; j+=i) {
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
}
main() {
int n;
cin>>n;
get(n);
for(int i=1; i<=n; i++)
for(int j=i*2; j<=n; j+=i)
f[j]+=i*phi[j/i];
for(int i=1; i<=n; i++) s[i]=s[i-1]+f[i];
cout<<s[n];
return 0;
}
关于1-n任意的gcd的和的更多相关文章
- 数字任意组合 - gcd
链接:https://www.nowcoder.com/acm/contest/160/A来源:牛客网 题目描述有一个计数器,计数器的初始值为0,每次操作你可以把计数器的值加上a1,a2,...,an ...
- ReactiveCocoa基础知识内容
本文记录一些关于学习ReactiveCocoa基础知识内容,对于ReactiveCocoa相关的概念如果不了解可以网上搜索:RACSignal有很多方法可以来订阅不同的事件类型,ReactiveCoc ...
- ReactiveCocoa v2.5 源码解析 之 架构总览
ReactiveCocoa 是一个 iOS 中的函数式响应式编程框架,它受 Functional Reactive Programming 的启发,是 Justin Spahr-Summers 和 J ...
- ReactiveCocoa_v2.5 源码解析之架构总览
ReactiveCocoa 是一个 iOS 中的函数式响应式编程框架,它受 Functional Reactive Programming 的启发,是 Justin Spahr-Summers 和 J ...
- [codeforces 804F. Fake bullions]
题目大意: 传送门. 给一个n个点的有向完全图(即任意两点有且仅有一条有向边). 每一个点上有$S_i$个人,开始时其中有些人有真金块,有些人没有金块.当时刻$i$时,若$u$到$v$有边,若$u$中 ...
- 长沙理工校赛I题题解-连续区间的最大公约数
题目来源https://www.nowcoder.com/acm/contest/96/I 解题前们需要先知道几个结论: 首先,gcd是有区单调性的: gcd(L,R)>=gcd(L,R+d) ...
- iOS ReactiveCocoa 最全常用API整理(可做为手册查询)
本文适合有一定RAC基础的童鞋做不时的查询,所以本文不做详细解释. 一.常见类 1.RACSiganl 信号类. RACEmptySignal :空信号,用来实现 RACSignal 的 +empty ...
- 题解 洛谷P2158 【[SDOI2008]仪仗队】
本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...
- 积性函数初步(欧拉$\varphi$函数)
updata on 2020.4.3 添加了欧拉\(\varphi\)函数为积性函数的证明和它的计算方式 1.积性函数 设\(f(n)\)为定义在正整数上的函数,若\(f(1)=1\),且对于任意正整 ...
随机推荐
- myslide探索
最近查一些国内学术牛人的报告时,注意到myslide是个很好的平台,比如山大一个老师的报告,完全可以在上面看到 https://myslide.cn/slides/10774 又比如交大一个大牛老师关 ...
- javascript中天气接口案例
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- lz的第一个RN项目
这是lz 成功在原有项目上集成的第一个ReactNative 项目. 参考官方网址: http://reactnative.cn/docs/0.43/integration-with-existing ...
- CSS 弹性盒
图片新窗口打开浏览
- 关于VS 2013连接Microsoft Access 2013的相关问题
① 下载安装Microsoft Access Database Engine 2010 Redistributable(28MB),共有32bit(下载)和64bit(下载)两个版本,具体要安 ...
- py2exe打包OpenCV,找不到libiomp5md.dll
问题:py2exe打包OpenCV,找不到libiomp5md.dll 解决方法:把 libiomp5md.dll 从numpy/core/ 里面复制到 python27/DLLS/文件夹!!!
- (转)RabbitMQ学习之消息可靠性及特性
http://blog.csdn.net/zhu_tianwei/article/details/53971296 下面主要从队列.消息发送.消息接收方面了解消息传递过的一些可靠性处理. 1.队列 消 ...
- 超酷消息警告框插件(SweetAlert)
今天给大家推荐一款不错的超酷消息警告框–SweetAlert:SweetAlert是一款不需要jQuery支持的原生js提示框,风格类似bootstrap.它的提示框不仅美丽动人,并且允许自定义,支持 ...
- 漫谈 Google 的 Native Client(NaCl) 技术(二)---- 技术篇(兼谈 LLVM)
转自:http://hzx5.blog.163.com/blog/static/40744388201172531637729/ 漫谈 Google 的 Native Client(NaCl) 技术( ...
- [bzoj 2726] 任务安排 (斜率优化 线性dp)
3月14日第三题!!!(虽然是15号发的qwq) Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3-N.这N个任务被分成若干批 ...