zoj1942Frogger
Frogger
Time Limit: 2 Seconds Memory Limit: 65536 KB
Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full
of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping.
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence.
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.
You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.
Input
The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2 <= n <= 200). The next n lines each contain two integers xi, yi (0 <= xi, yi <= 1000) representing the coordinates of stone #i. Stone #1 is
Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.
Output
For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line
after each test case, even after the last one.
Sample Input
2
0 0
3 4
3
17 4
19 4
18 5
0
Sample Output
Scenario #1
Frog Distance = 5.000
Scenario #2
Frog Distance = 1.414
就是说公青蛙和母青蛙都在一棵树上时,求当前树上的最大边;最小生成树,最后用并查集思想过。
附ac代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;
int per[220000];
struct node
{
int start;
int end;
double dis;
}t[200100];
int cmp(node a,node b)
{
return a.dis < b.dis ;
}
int find(int x)
{
int r=x;
while(r!=per[r])
r=per[r];
return r;
}
int join(int x,int y)
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
per[fx]=fy;
return 1;
}
return 0;
}
int main()
{
int i,n,j;
int flag=1;
double x[110000],y[110000];
while(scanf("%d",&n),n)
{
for(i=0;i<220000;i++)
per[i]=i;
for(i=1;i<=n;i++)
scanf("%lf%lf",&x[i],&y[i]);
int k=0;
for(i=1;i<=n;i++)
for(j=i+1;j<=n;j++)
{
t[k].start = i;
t[k].end = j;
t[k].dis =sqrt(((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]))*1.0);
k++;
}
sort(t,t+k,cmp);
double ans=0.0;
int a=0;
int b=0;
for(i=0;i<k;i++)
{
if(join(t[i].start,t[i].end))
{
/*if(ans<t[i].dis)
ans=t[i].dis;
if(x[t[i].start]==x[1]&&y[t[i].end]==y[1])
a=1;
if(x[t[i].start]==x[1]&&y[t[i].end]==y[1])
b=1;
if(a==1&&b==1)*/
if(find(1)==find(2))//公青蛙和母青蛙,在同一颗树上,
{
ans=t[i].dis;//按顺序加的边,当前边一定是所成树的最大边
break;
}
}
}
printf("Scenario #%d\n",flag);
printf("Frog Distance = %.3f\n\n",ans);
flag++;
}
return 0;
}
zoj1942Frogger的更多相关文章
随机推荐
- emmet教程
https://www.zfanw.com/blog/zencoding-vim-tutorial-chinese.html https://www.zfanw.com/blog/zencoding- ...
- What's the difference between returning void and returning a Task?
http://stackoverflow.com/questions/8043296/whats-the-difference-between-returning-void-and-returning ...
- FZOJ--2214--Knapsack problem(背包)
Problem 2214 Knapsack problem Accept: 5 Submit: 8 Time Limit: 3000 mSec Memory Limit : 32768 K ...
- POJ 3204 网络流的必须边
思路: 求一遍网络流 在残余网络上DFS 从起点DFS 从终点把边反向DFS 一个边跟起点连通 跟终点反向的边连通 ans++ 注:此题不能用tarjan 因为有边权为0的边 //By SiriusR ...
- javascript常用收集一下
事件源对象 event.srcElement.tagName event.srcElement.type 捕获释放 event.srcElement.setCapture(); event.srcEl ...
- 超轻便的 Cache_Lite 文件缓存
Cache_Lite提供了快速,轻便和安全的缓存系统.它针对文件容器进行了优化,并且防止缓存损坏(因为它使用文件锁定和/或散列测试). 个人感觉还是挺方便的. Cache_Lite 官方参考地址. C ...
- Could not create connection to database server. Attempted reconnect 3 times. Giving up.错误
项目是基于springboot框架,昨天从git上pull代码之后也没有具体看更改的地方,结果运行的时候就报错了. java.sql.SQLNonTransientConnectionExceptio ...
- 人在IT,关于计算机专业的杂谈PPT
- 洛谷 P2015 二叉苹果树 && caioj1107 树形动态规划(TreeDP)2:二叉苹果树
这道题一开始是按照caioj上面的方法写的 (1)存储二叉树用结构体,记录左儿子和右儿子 (2)把边上的权值转化到点上,离根远的点上 (3)用记忆化搜索,枚举左右节点分别有多少个点,去递归 这种写法有 ...
- 紫书 例题 10-20 UVa 10900(连续概率)
分两类,当前第i题答或不答 如果不回答的话最大期望奖金为2的i次方 如果回答的话等于p* 下一道题的最大期望奖金 那么显然我们要取最大值 所以就要分类讨论 我们设答对i题后的最大期望奖金为d[i] 显 ...