题面

传送门

思路

首先,要让两个人选的数字全部互质,那么有一个显然的充要条件:甲选的数字的质因数集合和乙选的数字的质因数集合没有交集

30pt

这种情况下n<=30,也就是说可用的质数只有10个,我们可以开个状压搞一搞

设$dp[S_1][S_2]$表示甲选择的质因数集合是$S_1$,乙是$S_2$的总情况数,

对于每个2-n分解质因数,把每个质因数是否出现状压起来存下来,dp的时候从前往后扫

那么可以刷表法做一波$dp[i][S_1|k][S_2]+=dp[i-1][S_1][S_2]$$(k$ $bitand$ $S_2=0)$,或者$dp[i][S_1][S_2|k]+=dp[i-1][S_1][S_2]$$(k$ $bitand$ $S_1=0)$,其中k是当前数的质因数集合,$bitand$是位与

滚动数组优化一下,把第一维去掉,总效率是$O(2^{20}n)$

100pt

这时有什么变化了呢?没错,n到了500以后可用的质因数变多了,我们无法把它们全部都压进一个数里面了

注意到,一个小于500的数,最多只可能有1个比22大的质因子

所以我们可以把这个质因子单独拿出来记录一下(没有就记为0)

然后,我们把2-n这些数按照大质因子大小排序,这样令大质因子相同的数排在一起(也就是不能甲乙同时选的)

我们记录三个相同数组:$dp[S_1][S_2],f1[][],f2[][]$,因为小质因数只有8个,所以$0\leq S_1,S_2\leq 255$

对于每一段大质因子相同的数,我们在这一段开始的时候把dp的值赋给f1和f2,然后在这一段内部用刷表法推f1和f2

具体来说这么做

$f1[i][S_1|k][S_2]+=f1[i-1][S_1][S_2]$$(k$ $bitand$ $S_2=0)$

或者$f2[i][S_1][S_2|k]+=f2[i-1][S_1][S_2]$$(k$ $bitand$ $S_1=0)$

其中k是当前数的质因数集合(只有8个二进制位了)

大家应当看出来了,f1表示的就是这个大质因子让第一个人选,f2就是这个大质因子让第二个人选

这一段数推完以后,再把f1f2合并到dp里面,$dp[S_1][S_2]=f1[S_1][S_2]+f2[S_1][S_2]-dp[S_1][S_2]$

这里减掉一个dp是因为两种情况会重复统计两个人都不选的情况(也就是原来的dp[S_1][S_2]的值),减掉即可

最后答案就是$dp[0-255][0-255]$的和了

总时间复杂度为$O(n2^{16})$(居然比30pt做法还快【滑稽】)

Code:

详细的实现见代码

  1. // luogu-judger-enable-o2
  2. #include<iostream>
  3. #include<cstdio>
  4. #include<cstring>
  5. #include<algorithm>
  6. #define ll long long
  7. using namespace std;
  8. inline int read(){
  9. int re=0,flag=1;char ch=getchar();
  10. while(ch>'9'||ch<'0'){
  11. if(ch=='-') flag=-1;
  12. ch=getchar();
  13. }
  14. while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
  15. return re*flag;
  16. }
  17. int n,MOD;
  18. int p[10]={0,2,3,5,7,11,13,17,19,0};
  19. struct node{
  20. int val,big,S;//big就是大质因数,S是小质因数集合
  21. void init(){
  22. int i,tmp=val;big=-1;
  23. for(i=1;i<=8;i++){//分解质因数
  24. if(tmp%p[i]) continue;
  25. S|=(1<<i-1);
  26. while(tmp%p[i]==0) tmp/=p[i];
  27. }
  28. if(tmp!=1) big=tmp;
  29. }
  30. }a[510];
  31. inline bool cmp(node l,node r){
  32. return l.big<r.big;
  33. }
  34. int pl(int l,int r){
  35. l+=r;
  36. return l>=MOD?l-MOD:l;
  37. }
  38. int dp[300][300],f1[300][300],f2[300][300];
  39. int main(){
  40. n=read();MOD=read();int i,j,k;
  41. for(i=2;i<=n;i++) a[i-1].val=i,a[i-1].init();
  42. sort(a+1,a+n,cmp);
  43. dp[0][0]=1;
  44. for(i=1;i<n;i++){
  45. if(i==1||a[i].big!=a[i-1].big||a[i].big==-1){
  46. memcpy(f1,dp,sizeof(f1));
  47. memcpy(f2,dp,sizeof(f2));
  48. }
  49. for(j=255;j>=0;j--){
  50. for(k=255;k>=0;k--){//因为是滚动数组,所以一定要倒着推
  51. if(j&k) continue;
  52. if((a[i].S&j)==0) f2[j][k|a[i].S]=pl(f2[j][k|a[i].S],f2[j][k]);
  53. if((a[i].S&k)==0) f1[j|a[i].S][k]=pl(f1[j|a[i].S][k],f1[j][k]);
  54. }
  55. }
  56. if(i==n-1||a[i].big!=a[i+1].big||a[i].big==-1){
  57. for(j=0;j<=255;j++){
  58. for(k=0;k<=255;k++){
  59. if(j&k) continue;
  60. dp[j][k]=pl(f1[j][k],pl(f2[j][k],MOD-dp[j][k]));
  61. }
  62. }
  63. }
  64. }
  65. ll ans=0;
  66. for(j=0;j<=255;j++){
  67. for(k=0;k<=255;k++){
  68. if((j&k)==0&&dp[j][k]) ans=pl(ans,dp[j][k]);
  69. }
  70. }
  71. cout<<ans;
  72. }

[NOI2015][bzoj4197] 寿司晚宴 [状压dp+质因数]的更多相关文章

  1. BZOJ 4197: [Noi2015]寿司晚宴 状压dp+质因数分解

    挺神的一道题 ~ 由于两个人选的数字不能有互质的情况,所以说对于一个质因子来说,如果 1 选了,则 2 不能选任何整除该质因子的数. 然后,我们发现对于 1 ~ 500 的数字来说,只可能有一个大于 ...

  2. NOI 2015 寿司晚宴 (状压DP+分组背包)

    题目大意:两个人从2~n中随意取几个数(不取也算作一种方案),被一个人取过的数不能被另一个人再取.两个人合法的取法是,其中一个人取的任何数必须与另一个人取的每一个数都互质,求所有合法的方案数 (数据范 ...

  3. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  4. bzoj4197 [Noi2015]寿司晚宴——状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4197 首先,两个人选的数都互质可以看作是一个人选了一个数,就相当于选了一个质因数集合,另一个 ...

  5. 【BZOJ-4197】寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  6. [NOI2015]寿司晚宴 --- 状压DP

    [NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...

  7. B4197 [Noi2015]寿司晚宴 状压dp

    这个题一开始想到了唯一分解定理,然后状压.但是显然数组开不下,后来想到每个数(n<500)大于19的素因子只可能有一个,所以直接单独存就行了. 然后正常状压dp就很好搞了. 题干: Descri ...

  8. [NOI2015]寿司晚宴——状压dp

    题目转化:将2~n的数分成两组,可以不选,使得这两组没有公共的质因子.求方案数. 选择了一个数,相当于选择了它的所有质因子. 30分: 发现,n<=30的时候,涉及到的质因子也就10个.2,3, ...

  9. BZOJ 4197 NOI 2015 寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

随机推荐

  1. Webpack4 学习笔记二 CSS模块转换

    前言 此内容是个人学习笔记,以便日后翻阅.非教程,如有错误还请指出 webpack 打包css模块 webpack是js模块打包器, 如果在入口文件引入css文件或其它的less.sass等文件,需要 ...

  2. NuGet管理和还原程序包

    在很多开源的程序下载下来不能使用,一般都是平台X86 和X64没有修改,还一个就是程序缺少资源包文件.用Nuget还原即可: 一般建议先修改好平台,然后用NuGet还原程序包.

  3. HTTP协议中request报文请求方法和状态响应码

    一个HTTP请求报文由4部分组成: 请求行(request line) 请求头部(header) 空行 请求数据 下图给出了请求报文的一般格式: 请求行中包括了请求方法,常见的请求方法有: GET:从 ...

  4. Eloquent: 修改器

    感觉好长时间没写东西了,一方面主要是自己的角色发生了变化,每天要面对各种各样的事情和突发事件,不能再有一个完整的长时间让自己静下来写代码,或者写文章. 另一方面现在公司技术栈不再停留在只有 Larav ...

  5. ethereum(以太坊)(十二)--应用(一)__集资(构造函数/映射)

    pragma solidity ^0.4.4; contract funder{ //0xca35b7d915458ef540ade6068dfe2f44e8fa733c //0x14723a09ac ...

  6. 访问远程mysql数据库,出现报错,显示“1130 - Host'xxx.xxx.xxx.xxx' is not allowed to connect to this MySQL server“

    在使用Navicat for MySQl访问远程mysql数据库,出现报错,显示“1130 - Host'xxx.xxx.xxx.xxx' is not allowed to connect to t ...

  7. PHP 代码规范、流程规范、git规范

    1. 命名规范 (1).变量命名规范 1.变量使用驼峰命名法 禁止使用拼音或者拼音加数字 2.变量也应具有描述性,杜绝一切拼音.或拼音英文混杂的命名方式 3.变量包数字.字母和下划线字符,不允许使用其 ...

  8. python学习之控制流1

    配置环境:python 3.6 python编辑器:pycharm 代码如下: #!/usr/bin/env python #-*- coding: utf-8 -*- # 控制流: # 1.布尔值: ...

  9. chroot: cannot run command `/bin/bash': No such file&nbs

    最近在使用chroot去重新的挂载一个根目录,总是出现上面的问题,很烦,好久了没有解决, 然后自己就写了一个复制依赖库的脚本,然后发现可以切换了,然后就重新试着去挂载根目录 终于发现了原因. ---- ...

  10. linux处理僵尸进程

    由来 在linux下,如果一个进程终止,内核会释放该进程使用的所有存储区,关闭所有文件句柄等,但是,内核会为每个终止子进程保留一定量的信息.这些信息至少包括进程ID,进程的终止状态,以及该进程使用的C ...