高度平衡树 -- AVL 树
Scheme 的表达, 优雅.
#lang scheme
( define nil '() )
( define ( root tree )( car tree ) )
( define ( left-tree tree )( cadr tree ) )
( define ( right-tree tree )( caddr tree ) )
( define ( height tree )
( cond [ ( null? tree ) 0 ]
[ else ( cadddr tree ) ] ) )
( define ( make-leaf elem )( list elem nil nil 1 ) )
( define ( make-avl-tree root left right )
( list root left right ( + 1 ( max ( height left )
( height right ) ) ) ) )
( define ( contains-elem?
elem tree )
( cond [ ( null? tree ) false ]
[ ( = elem ( root tree ) ) true ]
[ ( < elem ( root tree ) )
( contains-elem?
elem ( left-tree tree ) ) ]
[ ( > elem ( root tree ) )
( contains-elem? elem ( right-tree tree ) ) ] ) )
( define ( rotate-left-left tree )
( cond [ ( null? tree ) tree ]
[ else ( make-avl-tree ( root ( left-tree tree ) )
( left-tree ( left-tree tree ) )
( make-avl-tree ( root tree )
( right-tree ( left-tree tree ) )
( right-tree tree ) ) ) ] ) )
( define ( rotate-right-right tree )
( cond [ ( null? tree ) tree ]
[ else ( make-avl-tree ( root ( right-tree tree ) )
( make-avl-tree ( root tree )
( left-tree tree )
( left-tree ( right-tree tree ) ) )
( right-tree ( right-tree tree ) ) ) ] ) )
( define ( rotate-right-left tree )
( cond [ ( null?
tree ) tree ]
[ else ( make-avl-tree ( left-tree ( right-tree tree ) )
( make-avl-tree ( root tree )
( left-tree tree )
( left-tree ( left-tree ( right-tree tree ) ) ) )
( make-avl-tree ( root ( right-tree tree ) )
( right-tree ( left-tree ( right-tree tree ) ) )
( right-tree ( right-tree tree ) ) ) ) ] ) )
( define ( rotate-left-right tree )
( cond [ ( null?
tree ) tree ]
[ else ( make-avl-tree ( root ( right-tree ( left-tree tree ) ) )
( make-avl-tree ( root ( left-tree tree ) )
( left-tree ( left-tree tree ) )
( left-tree ( right-tree ( left-tree tree ) ) ) )
( make-avl-tree ( root tree )
( right-tree ( right-tree ( left-tree tree ) ) )
( right-tree tree ) ) ) ] ) )
( define ( balance-avl-tree tree )
( define ( factor tree )
( - ( height ( right-tree tree ) )
( height ( left-tree tree ) ) ) )
( let ( [ f ( factor tree ) ] )
( cond [ ( = f 2 )
( cond [ ( < ( factor ( right-tree tree ) ) 0 )
( rotate-right-left tree ) ]
[ else ( rotate-right-right tree ) ] ) ]
[ ( = f -2 )
( cond [ ( > ( factor ( left-tree tree ) ) 0 )
( rotate-left-right tree ) ]
[ else ( rotate-left-left tree ) ] ) ]
[ else tree ] ) ) )
( define ( insert-elem elem tree )
( define ( insert-in-son elem tree )
( cond [ ( null? tree )
( make-leaf elem ) ]
[ ( < elem ( root tree ) )
( let* ( [ newLeftTree ( insert-in-son elem ( left-tree tree ) ) ]
[ newAVLTree ( make-avl-tree ( root tree )
newLeftTree
( right-tree tree ) ) ] )
( balance-avl-tree newAVLTree ) ) ]
[ ( > elem ( root tree ) )
( let* ( [ newRightTree ( insert-in-son elem ( right-tree tree ) ) ]
[ newAVLTree ( make-avl-tree ( root tree )
( left-tree tree )
newRightTree ) ] )
( balance-avl-tree newAVLTree ) ) ]
[ else tree ] ) )
( cond [ ( contains-elem? elem tree ) tree ]
[ else ( insert-in-son elem tree ) ] ) )
( define ( delete-elem elem tree )
( define ( delete-left-most tree )
( cond [ ( left-empty? tree ) tree ]
[ else ( let* ( [ leftMost ( delete-left-most ( left-tree tree ) ) ]
[ newRightTree ( make-avl-tree ( root tree )
( right-tree leftMost )
( right-tree tree ) ) ] )
( make-avl-tree ( root leftMost )
nil
( balance-avl-tree newRightTree ) ) ) ] ) )
( define ( delete-in-son elem tree )
( cond [ ( < elem ( root tree ) )
( let* ( [ newLeftTree ( delete-in-son elem ( left-tree tree ) ) ]
[ newAVLTree ( make-avl-tree ( root tree )
newLeftTree
( right-tree tree ) ) ] )
( balance-avl-tree newAVLTree ) ) ]
[ ( > elem ( root tree ) )
( let* ( [ newRightTree ( delete-in-son elem ( right-tree tree ) ) ]
[ newAVLTree ( make-avl-tree ( root tree )
( left-tree tree )
newRightTree ) ] )
( balance-avl-tree newAVLTree ) ) ]
[ ( = elem ( root tree ) )
( cond [ ( and ( right-empty? tree )
( left-empty? tree ) )
nil ]
[ ( right-empty? tree )
( left-tree tree ) ]
[ ( left-empty? tree )
( right-tree tree ) ]
[ else ( let ( [ leftMost ( delete-left-most ( right-tree tree ) ) ] )
( make-avl-tree ( root leftMost )
( left-tree tree )
( right-tree leftMost ) ) ) ] ) ] ) )
( define ( left-empty? tree )( null?
( left-tree tree ) ) )
( define ( right-empty? tree )( null?
( right-tree tree ) ) )
( cond [ ( contains-elem?
elem tree )
( delete-in-son elem tree ) ]
[ else tree ] ) )
( define ( list->avl elems )
( define ( iter elems tree )
( cond [ ( null?
elems ) tree ]
[ else ( iter ( cdr elems )
( insert-elem ( car elems ) tree ) ) ] ) )
( cond [ ( null? elems ) '() ]
[ else ( let( [ avl ( make-leaf ( car elems ) ) ] )
( iter ( cdr elems ) avl ) ) ] ) )
高度平衡树 -- AVL 树的更多相关文章
- 【数据结构】平衡二叉树—AVL树
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增 ...
- AVL树(一)之 图文解析 和 C语言的实现
概要 本章介绍AVL树.和前面介绍"二叉查找树"的流程一样,本章先对AVL树的理论知识进行简单介绍,然后给出C语言的实现.本篇实现的二叉查找树是C语言版的,后面章节再分别给出C++ ...
- AVL树的左旋右旋理解 (转)
AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多 ...
- 简单数据结构———AVL树
C - 万恶的二叉树 Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:32768KB 64b ...
- 算法二叉搜索树之AVL树
最近学习了二叉搜索树中的AVL树,特在此写一篇博客小结. 1.引言 对于二叉搜索树而言,其插入查找删除等性能直接和树的高度有关,因此我们发明了平衡二叉搜索树.在计算机科学中,AVL树是最先发明的自平衡 ...
- AVL树,红黑树
AVL树 https://baike.baidu.com/item/AVL%E6%A0%91/10986648 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高 ...
- AVL树的理解及自写AVL树
AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多 ...
- 红黑树与AVL树
概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树 ...
- AVL树的实现——c++
一.概念 AVL树是根据它的发明者G.M. Adelson-Velsky和E.M. Landis命名的.它是最先发明的自平衡二叉查找树,也被称为高度平衡树.相比于"二叉查找树",它 ...
随机推荐
- 注册表数据提取工具RegRipper
注册表数据提取工具RegRipper 注册表是Windows操作系统一个数据库,用来存储系统和应用程序设置信息.注册表信息分别保存在操作系统中的6个Hive文件中.获取这几个文件,就可以从中提取注 ...
- [BZOJ 1412] 狼与羊的故事
Link: BZOJ 1412 传送门 Solution: 非常明显的最小割模型: 将所有点分成两个互不相邻的点集,且要求代价最小 建图: $<S,sheep,INF>$ $<wol ...
- POJ 2836 Rectangular Covering(状压DP)
[题目链接] http://poj.org/problem?id=2836 [题目大意] 给出二维平面的一些点,现在用一些非零矩阵把它们都包起来, 要求这些矩阵的面积和最小,求这个面积和 [题解] 我 ...
- 程设刷题 | 程序设计实践II-2017(部分)
目录 1165-算术题 题目描述 代码实现 1184-Tourist 1 题目描述 代码实现 1186-Tourist 2 题目描述 代码实现 1224-LOVE 题目描述 代码实现 1256-湘潭大 ...
- Visual Studio Package扩展——vsct文件简介
首先我们使用向导生成一个package的扩展,里面就会发现一个vsct文件.vsct文件的全称是Visual Studio Command Table,它其实就是一个xml文件,通过一定的规则来描述v ...
- c++中resize这个函数怎么用
c++中序列式容器的一个共性函数, vv.resize(int n,element)表示调整容器vv的大小为n,扩容后的每个元素的值为element,默认为0 resize()会改变容器的容量和当前元 ...
- What is the purpose of mock objects?
Since you say you are new to unit testing and asked for mock objects in "layman's terms", ...
- selenium 调用方法
#coding:utf-8 from selenium import webdriver url = "http://demo.testfire.net" chrome_optio ...
- django自定义过滤器及模板标签
创建一个模板库 不管是写自定义标签还是过滤器,第一件要做的事是创建模板库(Django能够导入的基本结构). 创建一个模板库分两步走: 第一,决定模板库应该放在哪个Django应用下. 如果你通过 m ...
- JS-只能输入中文和英文
<span style="font-family:KaiTi_GB2312;">转自:<a target=_blank href="http://www ...