高度平衡树 -- AVL 树
Scheme 的表达, 优雅.
#lang scheme
( define nil '() )
( define ( root tree )( car tree ) )
( define ( left-tree tree )( cadr tree ) )
( define ( right-tree tree )( caddr tree ) )
( define ( height tree )
( cond [ ( null? tree ) 0 ]
[ else ( cadddr tree ) ] ) )
( define ( make-leaf elem )( list elem nil nil 1 ) )
( define ( make-avl-tree root left right )
( list root left right ( + 1 ( max ( height left )
( height right ) ) ) ) )
( define ( contains-elem?
elem tree )
( cond [ ( null? tree ) false ]
[ ( = elem ( root tree ) ) true ]
[ ( < elem ( root tree ) )
( contains-elem?
elem ( left-tree tree ) ) ]
[ ( > elem ( root tree ) )
( contains-elem? elem ( right-tree tree ) ) ] ) )
( define ( rotate-left-left tree )
( cond [ ( null? tree ) tree ]
[ else ( make-avl-tree ( root ( left-tree tree ) )
( left-tree ( left-tree tree ) )
( make-avl-tree ( root tree )
( right-tree ( left-tree tree ) )
( right-tree tree ) ) ) ] ) )
( define ( rotate-right-right tree )
( cond [ ( null? tree ) tree ]
[ else ( make-avl-tree ( root ( right-tree tree ) )
( make-avl-tree ( root tree )
( left-tree tree )
( left-tree ( right-tree tree ) ) )
( right-tree ( right-tree tree ) ) ) ] ) )
( define ( rotate-right-left tree )
( cond [ ( null?
tree ) tree ]
[ else ( make-avl-tree ( left-tree ( right-tree tree ) )
( make-avl-tree ( root tree )
( left-tree tree )
( left-tree ( left-tree ( right-tree tree ) ) ) )
( make-avl-tree ( root ( right-tree tree ) )
( right-tree ( left-tree ( right-tree tree ) ) )
( right-tree ( right-tree tree ) ) ) ) ] ) )
( define ( rotate-left-right tree )
( cond [ ( null?
tree ) tree ]
[ else ( make-avl-tree ( root ( right-tree ( left-tree tree ) ) )
( make-avl-tree ( root ( left-tree tree ) )
( left-tree ( left-tree tree ) )
( left-tree ( right-tree ( left-tree tree ) ) ) )
( make-avl-tree ( root tree )
( right-tree ( right-tree ( left-tree tree ) ) )
( right-tree tree ) ) ) ] ) )
( define ( balance-avl-tree tree )
( define ( factor tree )
( - ( height ( right-tree tree ) )
( height ( left-tree tree ) ) ) )
( let ( [ f ( factor tree ) ] )
( cond [ ( = f 2 )
( cond [ ( < ( factor ( right-tree tree ) ) 0 )
( rotate-right-left tree ) ]
[ else ( rotate-right-right tree ) ] ) ]
[ ( = f -2 )
( cond [ ( > ( factor ( left-tree tree ) ) 0 )
( rotate-left-right tree ) ]
[ else ( rotate-left-left tree ) ] ) ]
[ else tree ] ) ) )
( define ( insert-elem elem tree )
( define ( insert-in-son elem tree )
( cond [ ( null? tree )
( make-leaf elem ) ]
[ ( < elem ( root tree ) )
( let* ( [ newLeftTree ( insert-in-son elem ( left-tree tree ) ) ]
[ newAVLTree ( make-avl-tree ( root tree )
newLeftTree
( right-tree tree ) ) ] )
( balance-avl-tree newAVLTree ) ) ]
[ ( > elem ( root tree ) )
( let* ( [ newRightTree ( insert-in-son elem ( right-tree tree ) ) ]
[ newAVLTree ( make-avl-tree ( root tree )
( left-tree tree )
newRightTree ) ] )
( balance-avl-tree newAVLTree ) ) ]
[ else tree ] ) )
( cond [ ( contains-elem? elem tree ) tree ]
[ else ( insert-in-son elem tree ) ] ) )
( define ( delete-elem elem tree )
( define ( delete-left-most tree )
( cond [ ( left-empty? tree ) tree ]
[ else ( let* ( [ leftMost ( delete-left-most ( left-tree tree ) ) ]
[ newRightTree ( make-avl-tree ( root tree )
( right-tree leftMost )
( right-tree tree ) ) ] )
( make-avl-tree ( root leftMost )
nil
( balance-avl-tree newRightTree ) ) ) ] ) )
( define ( delete-in-son elem tree )
( cond [ ( < elem ( root tree ) )
( let* ( [ newLeftTree ( delete-in-son elem ( left-tree tree ) ) ]
[ newAVLTree ( make-avl-tree ( root tree )
newLeftTree
( right-tree tree ) ) ] )
( balance-avl-tree newAVLTree ) ) ]
[ ( > elem ( root tree ) )
( let* ( [ newRightTree ( delete-in-son elem ( right-tree tree ) ) ]
[ newAVLTree ( make-avl-tree ( root tree )
( left-tree tree )
newRightTree ) ] )
( balance-avl-tree newAVLTree ) ) ]
[ ( = elem ( root tree ) )
( cond [ ( and ( right-empty? tree )
( left-empty? tree ) )
nil ]
[ ( right-empty? tree )
( left-tree tree ) ]
[ ( left-empty? tree )
( right-tree tree ) ]
[ else ( let ( [ leftMost ( delete-left-most ( right-tree tree ) ) ] )
( make-avl-tree ( root leftMost )
( left-tree tree )
( right-tree leftMost ) ) ) ] ) ] ) )
( define ( left-empty? tree )( null?
( left-tree tree ) ) )
( define ( right-empty? tree )( null?
( right-tree tree ) ) )
( cond [ ( contains-elem?
elem tree )
( delete-in-son elem tree ) ]
[ else tree ] ) )
( define ( list->avl elems )
( define ( iter elems tree )
( cond [ ( null?
elems ) tree ]
[ else ( iter ( cdr elems )
( insert-elem ( car elems ) tree ) ) ] ) )
( cond [ ( null? elems ) '() ]
[ else ( let( [ avl ( make-leaf ( car elems ) ) ] )
( iter ( cdr elems ) avl ) ) ] ) )
高度平衡树 -- AVL 树的更多相关文章
- 【数据结构】平衡二叉树—AVL树
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增 ...
- AVL树(一)之 图文解析 和 C语言的实现
概要 本章介绍AVL树.和前面介绍"二叉查找树"的流程一样,本章先对AVL树的理论知识进行简单介绍,然后给出C语言的实现.本篇实现的二叉查找树是C语言版的,后面章节再分别给出C++ ...
- AVL树的左旋右旋理解 (转)
AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多 ...
- 简单数据结构———AVL树
C - 万恶的二叉树 Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:32768KB 64b ...
- 算法二叉搜索树之AVL树
最近学习了二叉搜索树中的AVL树,特在此写一篇博客小结. 1.引言 对于二叉搜索树而言,其插入查找删除等性能直接和树的高度有关,因此我们发明了平衡二叉搜索树.在计算机科学中,AVL树是最先发明的自平衡 ...
- AVL树,红黑树
AVL树 https://baike.baidu.com/item/AVL%E6%A0%91/10986648 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高 ...
- AVL树的理解及自写AVL树
AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多 ...
- 红黑树与AVL树
概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树 ...
- AVL树的实现——c++
一.概念 AVL树是根据它的发明者G.M. Adelson-Velsky和E.M. Landis命名的.它是最先发明的自平衡二叉查找树,也被称为高度平衡树.相比于"二叉查找树",它 ...
随机推荐
- #424 Div2 E
#424 Div2 E 题意 给出一个 n 个数的数列,从前往后取数,如果第一个数是当前数列的最小值,则取出,否则将它放到数列尾端,问使数列为空需要多少步操作. 分析 用数据结构去模拟. 线段树维护区 ...
- JSP的内置对象(上)
1.JSP内置对象的概念:JSP的内置对象时Web容器所创建的一组对象,不使用new关键字就可以使用的内置对象 2.JSP九大内置对象内置对象:out ,request ,response ,sess ...
- Orchard FAQ
Orchard学习视频已登录百度传课: http://www.chuanke.com/3027295-124882.html 问:Orchard用VS重新生成后为什么那么大? 答:因为每个模块的bin ...
- 去掉wget烦人的 “eta(英国中部时间)” 提示
gentoo 里的 wget ,从1.12版本开始,就一直有个不影响功能的小毛病:由于中文翻译的失误,进度提示的时候,会被拉成很多行.原因就是原来英文的ETA这3个字母,被翻译成了 “eta(英国中部 ...
- JAVA之接口与实现
/** * * 功能:接口与实现 * 接口也体现了多态性 */package com.test; public class test5 { /** * @param args */ ...
- C#实现在Form上截取消息的两种方法
比较常用的是重载Form的DefWndProc方法,例如截取鼠标按下的消息: protected override void DefWndProc(ref Message m) { if ( m.Ms ...
- ElasticSearch refresh和flush的理解
在索引数据的时候,要保证被索引的文档能够立即被搜索到,就要涉及到_refresh 和_flush这两个方法. 1.fresh 当索引一个文档,文档先是被存储在内存里面,默认1秒后,会进入文件系统缓存, ...
- go语言的一些特性
go语言中如何判断一个方法是私有的还是公有的?说出来你可能不信,通过首字母的大小写. 不管是一个变量还是一个函数,如果它的首字母是大写的,那么它就是包外可见的,也就是说可以 从这个包的外面访问这个资源 ...
- Linux SSH和SFTP服务分离
Linux SSH和SFTP服务分离 学习了:https://www.cnblogs.com/zihanxing/articles/5665383.html 都是监听22端口:
- 怎么将JSP页面的ID值传给Action进行更新和删除
这里只是单纯的SH整合. JSP页面代码 <!-- value=action中数据库的User对象集合list必须和action定义的名字一样, 且为了在这里能够访问,需要生成get/set方法 ...