Budget
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 5962   Accepted: 2266   Special Judge

Description

We are supposed to make a budget proposal for this multi-site competition. The budget proposal is a matrix where the rows represent different kinds of expenses and the columns represent different sites. We had a meeting about this, some time ago where we discussed
the sums over different kinds of expenses and sums over different sites. There was also some talk about special constraints: someone mentioned that Computer Center would need at least 2000K Rials for food and someone from Sharif Authorities argued they wouldn't
use more than 30000K Rials for T-shirts. Anyway, we are sure there was more; we will go and try to find some notes from that meeting. 



And, by the way, no one really reads budget proposals anyway, so we'll just have to make sure that it sums up properly and meets all constraints.

Input

The first line of the input contains an integer N, giving the number of test cases. The next line is empty, then, test cases follow: The first line of each test case contains two integers, m and n, giving the number of rows and columns (m <= 200, n <= 20).
The second line contains m integers, giving the row sums of the matrix. The third line contains n integers, giving the column sums of the matrix. The fourth line contains an integer c (c < 1000) giving the number of constraints. The next c lines contain the
constraints. There is an empty line after each test case. 



Each constraint consists of two integers r and q, specifying some entry (or entries) in the matrix (the upper left corner is 1 1 and 0 is interpreted as "ALL", i.e. 4 0 means all entries on the fourth row and 0 0 means the entire matrix), one element from the
set {<, =, >} and one integer v, with the obvious interpretation. For instance, the constraint 1 2 > 5 means that the cell in the 1st row and 2nd column must have an entry strictly greater than 5, and the constraint 4 0 = 3 means that all elements in the fourth
row should be equal to 3.

Output

For each case output a matrix of non-negative integers meeting the above constraints or the string "IMPOSSIBLE" if no legal solution exists. Put one empty line between matrices.

Sample Input

2

2 3
8 10
5 6 7
4
0 2 > 2
2 1 = 3
2 3 > 2
2 3 < 5 2 2
4 5
6 7
1
1 1 > 10

Sample Output

2 3 3
3 3 4 IMPOSSIBLE

Source

这题做得真是抓狂啊,前前后后断断续续用了三天时间,主要时间都卡在一个手误上。敲错了一个字母...

题意:有一个n*m 的方阵, 方阵里面的数字未知, 可是我们知道例如以下约束条件:

1>  每一行的数字的和

2>  每一列的数字的和

3>  某些格子里的数,大小有限制。

比方规定第2行第3 列的数字必须大于5( 或必须小于3, 或必须等于10等)

求解是否存在在满足全部的约束的条件下用正数来填充该方阵的方案, 若有, 输出填充后的方阵, 否则输出IMPOSSIBLE.

题解:这道题能够转化成容量有上下界的最大流问题, 将方阵的行从1……n 编号, 列n+1……n+m 编号, 加入源点s=0 和汇点t=n+m+1.

1> 将源点和每个行节点相连, 相连所形成的边的容量和下界置为该行全部数字的和

2> 将每个列节点和汇点相连, 相连所形成的边的容量和下界都置为该列全部数字的和

3> 从每一个行节点到每一个列节点连边,容量为无穷大

4>  假设u 行v 列的数字必须大于w, 则边<u,v+n> 流量的下界是w+1

5>  假设u 行v 列的数字必须小于w, 则边<u,v+n> 容量改为w-1

6>  假设u 行v 列的数字必须等于w, 则边<u,v+n> 流量的下界和容量都是w

找到的可行流(也是最大流)。就是问题的解

本题trick:

1) W 可能为负数。产生流量下界为负数的情况。应处理成0

2) 数据本身可能矛盾。

比方前面说了 (2,1) =1, 后面又说(2,1) = 10

#include <stdio.h>
#include <string.h>
#define inf 0x3fffffff
#define maxn 250 int m, n, sink, ssource, ssink; // m rows, n columns
int G[maxn][maxn], G0[maxn][maxn], flow[maxn][maxn];
int low[maxn][maxn], high[maxn][maxn];
int in[maxn], out[maxn], Layer[maxn], que[maxn];
bool vis[maxn]; int min(int a, int b) {
return a > b ? b : a;
} int max(int a, int b) {
return a < b ? b : a;
} bool countLayer() {
memset(Layer, 0, sizeof(Layer));
int i, now, id = 0, front = 0;
Layer[ssource] = 1; que[id++] = ssource;
while(front < id) {
now = que[front++];
for(i = 0; i <= ssink; ++i)
if(G[now][i] > 0 && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == ssink) return true;
else que[id++] = i;
}
}
return false;
} int Dinic() {
int maxFlow = 0, minCut, pos, i, now, u, v, id = 0;
while(countLayer()) {
memset(vis, 0, sizeof(vis));
vis[ssource] = 1; que[id++] = ssource;
while(id) {
now = que[id - 1];
if(now == ssink) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = que[i - 1];
v = que[i];
if(minCut > G[u][v]) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = que[i - 1];
v = que[i];
G[u][v] -= minCut;
G[v][u] += minCut;
flow[u][v] += minCut;
flow[v][u] -= minCut;
}
while(que[id - 1] != pos)
vis[que[--id]] = 0;
} else {
for(i = 0; i <= ssink; ++i) {
if(G[now][i] > 0 && Layer[now] + 1 == Layer[i] && !vis[i]) {
vis[i] = 1; que[id++] = i; break;
}
}
if(i > ssink) --id;
}
}
}
return maxFlow;
} void solve() {
int i, j, sum = 0;
for(i = 0; i <= sink; ++i)
for(j = 0; j <= sink; ++j) {
G[i][j] = high[i][j] - low[i][j];
out[i] += low[i][j];
in[j] += low[i][j];
sum += low[i][j];
}
for(i = 0; i <= sink; ++i) {
G[ssource][i] = in[i];
G[i][ssink] = out[i];
}
// memcpy(G0, G, sizeof(G));
G[sink][0] = inf;
if(sum != Dinic()) {
printf("IMPOSSIBLE\n");
return;
}
G[sink][0] = G[0][sink] = 0;
for(i = 1; i <= m; ++i) {
// printf("%d", G0[i][1 + m] - G[i][1 + m] + low[i][1 + m]);
printf("%d", flow[i][1 + m] + low[i][1 + m]);
for(j = 2; j <= n; ++j)
printf(" %d", flow[i][j + m] + low[i][j + m]);
printf("\n");
}
} int main() {
// freopen("POJ2396.txt", "r", stdin);
// freopen("ans1.txt", "w", stdout);
int t, c, x, y, z, i, j;
char ch;
scanf("%d", &t);
while(t--) {
memset(G, 0, sizeof(G));
memset(low, 0, sizeof(low));
memset(high, 0, sizeof(high));
memset(out, 0, sizeof(out));
memset(in, 0, sizeof(in));
memset(flow, 0, sizeof(flow));
scanf("%d%d", &m, &n);
sink = m + n + 1;
ssource = sink + 1;
ssink = ssource + 1;
for(i = 1; i <= m; ++i) {
scanf("%d", &z);
low[0][i] = high[0][i] = z;
}
for(i = 1; i <= n; ++i) {
scanf("%d", &z);
low[m + i][sink] = high[m + i][sink] = z;
}
for(i = 1; i <= m; ++i) {
for(j = 1; j <= n; ++j) {
high[i][j + m] = inf;
}
}
scanf("%d", &c);
while(c--) {
scanf("%d%d %c %d", &x, &y, &ch, &z);
if(!x && y) { // 全部行的第y个元素
if(ch == '=') {
for(i = 1; i <= m; ++i)
low[i][m + y] = high[i][m + y] = z;
} else if(ch == '<') {
for(i = 1; i <= m; ++i)
high[i][m + y] = min(z - 1, high[i][m + y]);
} else {
for(i = 1; i <= m; ++i)
low[i][m + y] = max(z + 1, low[i][m + y]);
}
} else if(x && !y) {
if(ch == '=') {
for(i = 1; i <= n; ++i)
low[x][m + i] = high[x][m + i] = z;
} else if(ch == '<') {
for(i = 1; i <= n; ++i)
high[x][m + i] = min(high[x][m + i], z - 1);
} else {
for(i = 1; i <= n; ++i)
low[x][m + i] = max(low[x][m + i], z + 1);
}
} else if(!x && !y) {
for(i = 1; i <= m; ++i)
for(j = 1; j <= n; ++j) {
if(ch == '=')
low[i][m + j] = high[i][m + j] = z;
else if(ch == '<')
high[i][m + j] = min(high[i][m + j], z - 1);
else low[i][m + j] = max(low[i][m + j], z + 1);
}
} else {
if(ch == '=')
low[x][m + y] = high[x][m + y] = z;
else if(ch == '<')
high[x][m + y] = min(high[x][m + y], z - 1);
else low[x][m + y] = max(low[x][m + y], z + 1);
}
}
solve();
printf("\n");
}
return 0;
}

POJ2396 Budget 【带下界的最大流】的更多相关文章

  1. BZOJ 3876: [Ahoi2014]支线剧情 带下界的费用流

    3876: [Ahoi2014]支线剧情 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3876 Description [故事背景] 宅 ...

  2. [BZOJ2502]清理雪道解题报告|带下界的最小流

    滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机,每次飞 ...

  3. poj2396 Budget 上下界可行流

    Budget:http://poj.org/problem?id=2396 题意: 给定一个棋盘,给定每一行每一列的和,还有每个点的性质.求一个合理的棋盘数值放置方式. 思路: 比较经典的网络流模型, ...

  4. UVa 1440:Inspection(带下界的最小流)***

    https://vjudge.net/problem/UVA-1440 题意:给出一个图,要求每条边都必须至少走一次,问最少需要一笔画多少次. 思路:看了好久才勉强看懂模板.良心推荐:学习地址. 看完 ...

  5. POJ2396 Budget [有源汇上下界可行流]

    POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...

  6. ZOJ 2314 带上下界的可行流

    对于无源汇问题,方法有两种. 1 从边的角度来处理. 新建超级源汇, 对于每一条有下界的边,x->y, 建立有向边 超级源->y ,容量为x->y下界,建立有向边 x-> 超级 ...

  7. 【BZOJ-2893】征服王 最大费用最大流(带下界最小流)

    2893: 征服王 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 156  Solved: 48[Submit][Status][Discuss] D ...

  8. POJ 2396 Budget (上下界网络流有源可行流)

    转载: http://blog.csdn.net/axuan_k/article/details/47297395 题目描述: 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表 ...

  9. POJ2396 Budget

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 7401   Accepted: 2764   Special Judge D ...

随机推荐

  1. 线程同步工具之CountDownLatch

    CountDownLatch,一个同步辅助类,在完成一组其他线程汇总执行的操作前,它允许一个或多个线程一直等待 主要方法:      public CountDownLatch(int count); ...

  2. Android 使用SQLite本地数据库

    参考:http://blog.csdn.net/jianghuiquan/article/details/8569252 在Android平台上,集成了一个嵌入式关系型数据库—SQLite.以SQLi ...

  3. checkStyle总结

    参考网站:https://code.google.com/p/testcq/wiki/CheckStyleRules 1.Variable access definition in wrong ord ...

  4. smarty在循环的时候计数来显示这是第几次循环的功能

    想必有很多人比较喜欢这个smarty循环的时候有个变量增加的功能或比较需要这个功能吧?其实不需要额外的变量,当然你也许根本用不了.我们用smarty内置的就可以了.就是smarty有foreach和s ...

  5. iOS音乐后台播放及锁屏信息显示

    实现音乐的后台播放.以及播放时,能够控制其暂停,下一首等操作,以及锁屏图片歌曲名等的显示 此实例须要真机调试.效果图例如以下: project下载:githubproject下载 实现步骤: 1.首先 ...

  6. K-近邻算法的Python实现 : 源代码分析

    网上介绍K-近邻算法的样例非常多.其Python实现版本号基本都是来自于机器学习的入门书籍<机器学习实战>,尽管K-近邻算法本身非常easy,但非常多刚開始学习的人对其Python版本号的 ...

  7. S1:适配器 Adapter

    将一个类的接口转换为用户期望的另外一个接口.适配器使得原本由于接口不兼容而不能一起工作的类可以一起工作   UML: 一.类适配器: class A { public function methodA ...

  8. Android 6.0及以上版本号的执行时权限介绍

    执行时权限(Runtime Permission)是Android 6.0( 代号为 Marshmallow,API版本号为 23)及以上版本号新增的功能.相比于以往版本号,这是一个较大变化. 本文将 ...

  9. 【Nginx】HTTP配置模型

    当Nginx检測到配置文件里存在配置块http{}时.会建立一个ngx_http_conf_ctx_t结构体,该结构体定义例如以下: typedef struct { void **main_conf ...

  10. ROS库生成和调用

      参考资料: 生成.so文件:http://blog.csdn.net/u013243710/article/details/35795841 调用.so文件:http://blog.csdn.ne ...