POJ2396 Budget 【带下界的最大流】
Time Limit: 3000MS | Memory Limit: 65536K | |||
Total Submissions: 5962 | Accepted: 2266 | Special Judge |
Description
the sums over different kinds of expenses and sums over different sites. There was also some talk about special constraints: someone mentioned that Computer Center would need at least 2000K Rials for food and someone from Sharif Authorities argued they wouldn't
use more than 30000K Rials for T-shirts. Anyway, we are sure there was more; we will go and try to find some notes from that meeting.
And, by the way, no one really reads budget proposals anyway, so we'll just have to make sure that it sums up properly and meets all constraints.
Input
The second line contains m integers, giving the row sums of the matrix. The third line contains n integers, giving the column sums of the matrix. The fourth line contains an integer c (c < 1000) giving the number of constraints. The next c lines contain the
constraints. There is an empty line after each test case.
Each constraint consists of two integers r and q, specifying some entry (or entries) in the matrix (the upper left corner is 1 1 and 0 is interpreted as "ALL", i.e. 4 0 means all entries on the fourth row and 0 0 means the entire matrix), one element from the
set {<, =, >} and one integer v, with the obvious interpretation. For instance, the constraint 1 2 > 5 means that the cell in the 1st row and 2nd column must have an entry strictly greater than 5, and the constraint 4 0 = 3 means that all elements in the fourth
row should be equal to 3.
Output
Sample Input
2 2 3
8 10
5 6 7
4
0 2 > 2
2 1 = 3
2 3 > 2
2 3 < 5 2 2
4 5
6 7
1
1 1 > 10
Sample Output
2 3 3
3 3 4 IMPOSSIBLE
Source
这题做得真是抓狂啊,前前后后断断续续用了三天时间,主要时间都卡在一个手误上。敲错了一个字母...
题意:有一个n*m 的方阵, 方阵里面的数字未知, 可是我们知道例如以下约束条件:
1> 每一行的数字的和
2> 每一列的数字的和
3> 某些格子里的数,大小有限制。
比方规定第2行第3 列的数字必须大于5( 或必须小于3, 或必须等于10等)
求解是否存在在满足全部的约束的条件下用正数来填充该方阵的方案, 若有, 输出填充后的方阵, 否则输出IMPOSSIBLE.
题解:这道题能够转化成容量有上下界的最大流问题, 将方阵的行从1……n 编号, 列n+1……n+m 编号, 加入源点s=0 和汇点t=n+m+1.
1> 将源点和每个行节点相连, 相连所形成的边的容量和下界置为该行全部数字的和
2> 将每个列节点和汇点相连, 相连所形成的边的容量和下界都置为该列全部数字的和
3> 从每一个行节点到每一个列节点连边,容量为无穷大
4> 假设u 行v 列的数字必须大于w, 则边<u,v+n> 流量的下界是w+1
5> 假设u 行v 列的数字必须小于w, 则边<u,v+n> 容量改为w-1
6> 假设u 行v 列的数字必须等于w, 则边<u,v+n> 流量的下界和容量都是w
找到的可行流(也是最大流)。就是问题的解
本题trick:
1) W 可能为负数。产生流量下界为负数的情况。应处理成0
2) 数据本身可能矛盾。
比方前面说了 (2,1) =1, 后面又说(2,1) = 10
#include <stdio.h>
#include <string.h>
#define inf 0x3fffffff
#define maxn 250 int m, n, sink, ssource, ssink; // m rows, n columns
int G[maxn][maxn], G0[maxn][maxn], flow[maxn][maxn];
int low[maxn][maxn], high[maxn][maxn];
int in[maxn], out[maxn], Layer[maxn], que[maxn];
bool vis[maxn]; int min(int a, int b) {
return a > b ? b : a;
} int max(int a, int b) {
return a < b ? b : a;
} bool countLayer() {
memset(Layer, 0, sizeof(Layer));
int i, now, id = 0, front = 0;
Layer[ssource] = 1; que[id++] = ssource;
while(front < id) {
now = que[front++];
for(i = 0; i <= ssink; ++i)
if(G[now][i] > 0 && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == ssink) return true;
else que[id++] = i;
}
}
return false;
} int Dinic() {
int maxFlow = 0, minCut, pos, i, now, u, v, id = 0;
while(countLayer()) {
memset(vis, 0, sizeof(vis));
vis[ssource] = 1; que[id++] = ssource;
while(id) {
now = que[id - 1];
if(now == ssink) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = que[i - 1];
v = que[i];
if(minCut > G[u][v]) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = que[i - 1];
v = que[i];
G[u][v] -= minCut;
G[v][u] += minCut;
flow[u][v] += minCut;
flow[v][u] -= minCut;
}
while(que[id - 1] != pos)
vis[que[--id]] = 0;
} else {
for(i = 0; i <= ssink; ++i) {
if(G[now][i] > 0 && Layer[now] + 1 == Layer[i] && !vis[i]) {
vis[i] = 1; que[id++] = i; break;
}
}
if(i > ssink) --id;
}
}
}
return maxFlow;
} void solve() {
int i, j, sum = 0;
for(i = 0; i <= sink; ++i)
for(j = 0; j <= sink; ++j) {
G[i][j] = high[i][j] - low[i][j];
out[i] += low[i][j];
in[j] += low[i][j];
sum += low[i][j];
}
for(i = 0; i <= sink; ++i) {
G[ssource][i] = in[i];
G[i][ssink] = out[i];
}
// memcpy(G0, G, sizeof(G));
G[sink][0] = inf;
if(sum != Dinic()) {
printf("IMPOSSIBLE\n");
return;
}
G[sink][0] = G[0][sink] = 0;
for(i = 1; i <= m; ++i) {
// printf("%d", G0[i][1 + m] - G[i][1 + m] + low[i][1 + m]);
printf("%d", flow[i][1 + m] + low[i][1 + m]);
for(j = 2; j <= n; ++j)
printf(" %d", flow[i][j + m] + low[i][j + m]);
printf("\n");
}
} int main() {
// freopen("POJ2396.txt", "r", stdin);
// freopen("ans1.txt", "w", stdout);
int t, c, x, y, z, i, j;
char ch;
scanf("%d", &t);
while(t--) {
memset(G, 0, sizeof(G));
memset(low, 0, sizeof(low));
memset(high, 0, sizeof(high));
memset(out, 0, sizeof(out));
memset(in, 0, sizeof(in));
memset(flow, 0, sizeof(flow));
scanf("%d%d", &m, &n);
sink = m + n + 1;
ssource = sink + 1;
ssink = ssource + 1;
for(i = 1; i <= m; ++i) {
scanf("%d", &z);
low[0][i] = high[0][i] = z;
}
for(i = 1; i <= n; ++i) {
scanf("%d", &z);
low[m + i][sink] = high[m + i][sink] = z;
}
for(i = 1; i <= m; ++i) {
for(j = 1; j <= n; ++j) {
high[i][j + m] = inf;
}
}
scanf("%d", &c);
while(c--) {
scanf("%d%d %c %d", &x, &y, &ch, &z);
if(!x && y) { // 全部行的第y个元素
if(ch == '=') {
for(i = 1; i <= m; ++i)
low[i][m + y] = high[i][m + y] = z;
} else if(ch == '<') {
for(i = 1; i <= m; ++i)
high[i][m + y] = min(z - 1, high[i][m + y]);
} else {
for(i = 1; i <= m; ++i)
low[i][m + y] = max(z + 1, low[i][m + y]);
}
} else if(x && !y) {
if(ch == '=') {
for(i = 1; i <= n; ++i)
low[x][m + i] = high[x][m + i] = z;
} else if(ch == '<') {
for(i = 1; i <= n; ++i)
high[x][m + i] = min(high[x][m + i], z - 1);
} else {
for(i = 1; i <= n; ++i)
low[x][m + i] = max(low[x][m + i], z + 1);
}
} else if(!x && !y) {
for(i = 1; i <= m; ++i)
for(j = 1; j <= n; ++j) {
if(ch == '=')
low[i][m + j] = high[i][m + j] = z;
else if(ch == '<')
high[i][m + j] = min(high[i][m + j], z - 1);
else low[i][m + j] = max(low[i][m + j], z + 1);
}
} else {
if(ch == '=')
low[x][m + y] = high[x][m + y] = z;
else if(ch == '<')
high[x][m + y] = min(high[x][m + y], z - 1);
else low[x][m + y] = max(low[x][m + y], z + 1);
}
}
solve();
printf("\n");
}
return 0;
}
POJ2396 Budget 【带下界的最大流】的更多相关文章
- BZOJ 3876: [Ahoi2014]支线剧情 带下界的费用流
3876: [Ahoi2014]支线剧情 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3876 Description [故事背景] 宅 ...
- [BZOJ2502]清理雪道解题报告|带下界的最小流
滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机,每次飞 ...
- poj2396 Budget 上下界可行流
Budget:http://poj.org/problem?id=2396 题意: 给定一个棋盘,给定每一行每一列的和,还有每个点的性质.求一个合理的棋盘数值放置方式. 思路: 比较经典的网络流模型, ...
- UVa 1440:Inspection(带下界的最小流)***
https://vjudge.net/problem/UVA-1440 题意:给出一个图,要求每条边都必须至少走一次,问最少需要一笔画多少次. 思路:看了好久才勉强看懂模板.良心推荐:学习地址. 看完 ...
- POJ2396 Budget [有源汇上下界可行流]
POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...
- ZOJ 2314 带上下界的可行流
对于无源汇问题,方法有两种. 1 从边的角度来处理. 新建超级源汇, 对于每一条有下界的边,x->y, 建立有向边 超级源->y ,容量为x->y下界,建立有向边 x-> 超级 ...
- 【BZOJ-2893】征服王 最大费用最大流(带下界最小流)
2893: 征服王 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 156 Solved: 48[Submit][Status][Discuss] D ...
- POJ 2396 Budget (上下界网络流有源可行流)
转载: http://blog.csdn.net/axuan_k/article/details/47297395 题目描述: 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表 ...
- POJ2396 Budget
Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 7401 Accepted: 2764 Special Judge D ...
随机推荐
- IOS提示控件UIActionSheet,UIAlertView
iphone中常用的消息提示控件,就是UIActionSheet和UIAlertView了,在Web开发中,UIActionSheet就像是confirm(),而UIAlertView就像是alert ...
- ~/.bash_profile介绍
mac和linux终端一般用bash来进行解析.当bash在读完了整体环境变量的/etc/profile并借此调用其他配置文件后,接下来则是会读取用户自定义的个人配置文件.bash读取的文件总共有三种 ...
- oracle 12C SYS,SYSTEM用户的密码都忘记或是丢失
密码 conn / as sysdba alter user system identified by Abcd1234; manual script first -->manual_scrip ...
- 从头认识Spring-1.7 如何通过属性注入Bean?(1)-如何通过属性向对象注入值?
这一章节我们来讨论一下如何通过属性注入Bean? 这一章节分为两部分,第一部分我们通过属性向对象注入值,第二部分我们通过属性向对象注入还有一个对象的引用. 1.如何通过属性向对象注入值? (1)dom ...
- Eclipse web项目导入Intellij 并且部署
一.导入自己的web项目 步骤:File->New->Project from Existing Source... 二.选择项目的所在位置,点击"OK";接着如下图所 ...
- azkaban2.5 具体配置以及使用方式
azkaban支持shell.java.mapreduce以及hive的工作流调度,在对这些不同类型任务调度之前须要配置所相应的插件:azkaban总体分为两部分azkaban executor se ...
- angular controller的一些用法
最近公司的项目是es6+angular.其中的代码格式还在逐步摸索中.感谢今天同事每天帮我解惑. 今天简单梳理一下controller的一些用法 之前看书所熟知的都是 这是最普通的一种 //html ...
- hibernate学习系列-----(2)hibernate核心接口和工作机制
在上一篇文章hibernate学习系列-----(1)开发环境搭建中,大致总结了hibernate的开发环境的搭建步骤,今天,我们继续了解有关hibernate的知识,先说说这篇文章的主要内容吧: C ...
- Android学习(二十三)SubMenu 子菜单
一.SubMenu子菜单 和功能菜单相似,但是可以添加子菜单. 二.实现步骤: 1.通过onCreateOptionsMenu方法创建子菜单,可以通过代码动态创建,也可以通过xml进行创建. 2.通过 ...
- 作者:wallimn
经过这几天对DHTMLXTree的折腾总算是有点眉目了.领导催得紧.组长紧的催. 唉,把握这次机会来好好总结一下DHTMLXTree. 还是老套路.首先来简单了解一下DHTMLXTree. DHTML ...