POJ2396 Budget 【带下界的最大流】
Time Limit: 3000MS | Memory Limit: 65536K | |||
Total Submissions: 5962 | Accepted: 2266 | Special Judge |
Description
the sums over different kinds of expenses and sums over different sites. There was also some talk about special constraints: someone mentioned that Computer Center would need at least 2000K Rials for food and someone from Sharif Authorities argued they wouldn't
use more than 30000K Rials for T-shirts. Anyway, we are sure there was more; we will go and try to find some notes from that meeting.
And, by the way, no one really reads budget proposals anyway, so we'll just have to make sure that it sums up properly and meets all constraints.
Input
The second line contains m integers, giving the row sums of the matrix. The third line contains n integers, giving the column sums of the matrix. The fourth line contains an integer c (c < 1000) giving the number of constraints. The next c lines contain the
constraints. There is an empty line after each test case.
Each constraint consists of two integers r and q, specifying some entry (or entries) in the matrix (the upper left corner is 1 1 and 0 is interpreted as "ALL", i.e. 4 0 means all entries on the fourth row and 0 0 means the entire matrix), one element from the
set {<, =, >} and one integer v, with the obvious interpretation. For instance, the constraint 1 2 > 5 means that the cell in the 1st row and 2nd column must have an entry strictly greater than 5, and the constraint 4 0 = 3 means that all elements in the fourth
row should be equal to 3.
Output
Sample Input
2 2 3
8 10
5 6 7
4
0 2 > 2
2 1 = 3
2 3 > 2
2 3 < 5 2 2
4 5
6 7
1
1 1 > 10
Sample Output
2 3 3
3 3 4 IMPOSSIBLE
Source
这题做得真是抓狂啊,前前后后断断续续用了三天时间,主要时间都卡在一个手误上。敲错了一个字母...
题意:有一个n*m 的方阵, 方阵里面的数字未知, 可是我们知道例如以下约束条件:
1> 每一行的数字的和
2> 每一列的数字的和
3> 某些格子里的数,大小有限制。
比方规定第2行第3 列的数字必须大于5( 或必须小于3, 或必须等于10等)
求解是否存在在满足全部的约束的条件下用正数来填充该方阵的方案, 若有, 输出填充后的方阵, 否则输出IMPOSSIBLE.
题解:这道题能够转化成容量有上下界的最大流问题, 将方阵的行从1……n 编号, 列n+1……n+m 编号, 加入源点s=0 和汇点t=n+m+1.
1> 将源点和每个行节点相连, 相连所形成的边的容量和下界置为该行全部数字的和
2> 将每个列节点和汇点相连, 相连所形成的边的容量和下界都置为该列全部数字的和
3> 从每一个行节点到每一个列节点连边,容量为无穷大
4> 假设u 行v 列的数字必须大于w, 则边<u,v+n> 流量的下界是w+1
5> 假设u 行v 列的数字必须小于w, 则边<u,v+n> 容量改为w-1
6> 假设u 行v 列的数字必须等于w, 则边<u,v+n> 流量的下界和容量都是w
找到的可行流(也是最大流)。就是问题的解
本题trick:
1) W 可能为负数。产生流量下界为负数的情况。应处理成0
2) 数据本身可能矛盾。
比方前面说了 (2,1) =1, 后面又说(2,1) = 10
#include <stdio.h>
#include <string.h>
#define inf 0x3fffffff
#define maxn 250 int m, n, sink, ssource, ssink; // m rows, n columns
int G[maxn][maxn], G0[maxn][maxn], flow[maxn][maxn];
int low[maxn][maxn], high[maxn][maxn];
int in[maxn], out[maxn], Layer[maxn], que[maxn];
bool vis[maxn]; int min(int a, int b) {
return a > b ? b : a;
} int max(int a, int b) {
return a < b ? b : a;
} bool countLayer() {
memset(Layer, 0, sizeof(Layer));
int i, now, id = 0, front = 0;
Layer[ssource] = 1; que[id++] = ssource;
while(front < id) {
now = que[front++];
for(i = 0; i <= ssink; ++i)
if(G[now][i] > 0 && !Layer[i]) {
Layer[i] = Layer[now] + 1;
if(i == ssink) return true;
else que[id++] = i;
}
}
return false;
} int Dinic() {
int maxFlow = 0, minCut, pos, i, now, u, v, id = 0;
while(countLayer()) {
memset(vis, 0, sizeof(vis));
vis[ssource] = 1; que[id++] = ssource;
while(id) {
now = que[id - 1];
if(now == ssink) {
minCut = inf;
for(i = 1; i < id; ++i) {
u = que[i - 1];
v = que[i];
if(minCut > G[u][v]) {
minCut = G[u][v];
pos = u;
}
}
maxFlow += minCut;
for(i = 1; i < id; ++i) {
u = que[i - 1];
v = que[i];
G[u][v] -= minCut;
G[v][u] += minCut;
flow[u][v] += minCut;
flow[v][u] -= minCut;
}
while(que[id - 1] != pos)
vis[que[--id]] = 0;
} else {
for(i = 0; i <= ssink; ++i) {
if(G[now][i] > 0 && Layer[now] + 1 == Layer[i] && !vis[i]) {
vis[i] = 1; que[id++] = i; break;
}
}
if(i > ssink) --id;
}
}
}
return maxFlow;
} void solve() {
int i, j, sum = 0;
for(i = 0; i <= sink; ++i)
for(j = 0; j <= sink; ++j) {
G[i][j] = high[i][j] - low[i][j];
out[i] += low[i][j];
in[j] += low[i][j];
sum += low[i][j];
}
for(i = 0; i <= sink; ++i) {
G[ssource][i] = in[i];
G[i][ssink] = out[i];
}
// memcpy(G0, G, sizeof(G));
G[sink][0] = inf;
if(sum != Dinic()) {
printf("IMPOSSIBLE\n");
return;
}
G[sink][0] = G[0][sink] = 0;
for(i = 1; i <= m; ++i) {
// printf("%d", G0[i][1 + m] - G[i][1 + m] + low[i][1 + m]);
printf("%d", flow[i][1 + m] + low[i][1 + m]);
for(j = 2; j <= n; ++j)
printf(" %d", flow[i][j + m] + low[i][j + m]);
printf("\n");
}
} int main() {
// freopen("POJ2396.txt", "r", stdin);
// freopen("ans1.txt", "w", stdout);
int t, c, x, y, z, i, j;
char ch;
scanf("%d", &t);
while(t--) {
memset(G, 0, sizeof(G));
memset(low, 0, sizeof(low));
memset(high, 0, sizeof(high));
memset(out, 0, sizeof(out));
memset(in, 0, sizeof(in));
memset(flow, 0, sizeof(flow));
scanf("%d%d", &m, &n);
sink = m + n + 1;
ssource = sink + 1;
ssink = ssource + 1;
for(i = 1; i <= m; ++i) {
scanf("%d", &z);
low[0][i] = high[0][i] = z;
}
for(i = 1; i <= n; ++i) {
scanf("%d", &z);
low[m + i][sink] = high[m + i][sink] = z;
}
for(i = 1; i <= m; ++i) {
for(j = 1; j <= n; ++j) {
high[i][j + m] = inf;
}
}
scanf("%d", &c);
while(c--) {
scanf("%d%d %c %d", &x, &y, &ch, &z);
if(!x && y) { // 全部行的第y个元素
if(ch == '=') {
for(i = 1; i <= m; ++i)
low[i][m + y] = high[i][m + y] = z;
} else if(ch == '<') {
for(i = 1; i <= m; ++i)
high[i][m + y] = min(z - 1, high[i][m + y]);
} else {
for(i = 1; i <= m; ++i)
low[i][m + y] = max(z + 1, low[i][m + y]);
}
} else if(x && !y) {
if(ch == '=') {
for(i = 1; i <= n; ++i)
low[x][m + i] = high[x][m + i] = z;
} else if(ch == '<') {
for(i = 1; i <= n; ++i)
high[x][m + i] = min(high[x][m + i], z - 1);
} else {
for(i = 1; i <= n; ++i)
low[x][m + i] = max(low[x][m + i], z + 1);
}
} else if(!x && !y) {
for(i = 1; i <= m; ++i)
for(j = 1; j <= n; ++j) {
if(ch == '=')
low[i][m + j] = high[i][m + j] = z;
else if(ch == '<')
high[i][m + j] = min(high[i][m + j], z - 1);
else low[i][m + j] = max(low[i][m + j], z + 1);
}
} else {
if(ch == '=')
low[x][m + y] = high[x][m + y] = z;
else if(ch == '<')
high[x][m + y] = min(high[x][m + y], z - 1);
else low[x][m + y] = max(low[x][m + y], z + 1);
}
}
solve();
printf("\n");
}
return 0;
}
POJ2396 Budget 【带下界的最大流】的更多相关文章
- BZOJ 3876: [Ahoi2014]支线剧情 带下界的费用流
3876: [Ahoi2014]支线剧情 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3876 Description [故事背景] 宅 ...
- [BZOJ2502]清理雪道解题报告|带下界的最小流
滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机,每次飞 ...
- poj2396 Budget 上下界可行流
Budget:http://poj.org/problem?id=2396 题意: 给定一个棋盘,给定每一行每一列的和,还有每个点的性质.求一个合理的棋盘数值放置方式. 思路: 比较经典的网络流模型, ...
- UVa 1440:Inspection(带下界的最小流)***
https://vjudge.net/problem/UVA-1440 题意:给出一个图,要求每条边都必须至少走一次,问最少需要一笔画多少次. 思路:看了好久才勉强看懂模板.良心推荐:学习地址. 看完 ...
- POJ2396 Budget [有源汇上下界可行流]
POJ2396 Budget 题意:n*m的非负整数矩阵,给出每行每列的和,以及一些约束关系x,y,>=<,val,表示格子(x,y)的值与val的关系,0代表整行/列都有这个关系,求判断 ...
- ZOJ 2314 带上下界的可行流
对于无源汇问题,方法有两种. 1 从边的角度来处理. 新建超级源汇, 对于每一条有下界的边,x->y, 建立有向边 超级源->y ,容量为x->y下界,建立有向边 x-> 超级 ...
- 【BZOJ-2893】征服王 最大费用最大流(带下界最小流)
2893: 征服王 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 156 Solved: 48[Submit][Status][Discuss] D ...
- POJ 2396 Budget (上下界网络流有源可行流)
转载: http://blog.csdn.net/axuan_k/article/details/47297395 题目描述: 现在要针对多赛区竞赛制定一个预算,该预算是一个行代表不同种类支出.列代表 ...
- POJ2396 Budget
Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 7401 Accepted: 2764 Special Judge D ...
随机推荐
- 前端JavaScript实现跨域的方式(转)
这里说的js跨域是指通过js在不同的域之间进行数据传输或通信,比如用ajax向一个不同的域请求数据,或者通过js获取页面中不同域的框架中(iframe)的数据.只要协议.域名.端口有任何一个不同,都被 ...
- sql-----STR 函数
原文:sql-----STR 函数 sql-----STR 函数 STR 函数由数字数据转换来的字符数据. 语法 STR ( float_expression [ , length [ , decim ...
- zookeeper 学习笔记2
ephemeral 英[ɪˈfemərəl]美[ɪˈfɛmərəl]adj. 朝生暮死; 短暂的,瞬息的; 朝露; 一年生; ZooKeeper Watcher 机制 集群状态监控示例 为了确保集群能 ...
- ubuntu配置 测试环境 记录
1 更新源 进入 /etc/apt/sources.list sudo vim进入, 更改为如下源 # See http://help.ubuntu.com/community/UpgradeNot ...
- mysql 数据库设计(转)
本规范适用于mysql 5.1或以上版本使用 数据库范式 第一范式(1NF)确保每列保持原子性 第一范式(1NF):数据库表的每一列都是不可分割的原子数据项,而不能是集合,数组,记录等非原子数据项. ...
- java-selenium(二)富文本编辑框的处理
首先先看一下什么是富文本编辑框 HTML源码 思路:首先先进入到iframe中,再用js写,最后切出iframe 如果想要换行可以在换行的地方加上<br> 如果添加的文本中包含单引号.双引 ...
- 单一按钮显示/隐藏&&提示框效果
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- android:Cordova Android, hello Cordova ,PhoneGap android
文章来自:http://blog.csdn.net/intbird 官方文档: http://cordova.apache.org/docs/en/5.0.0//index.html intbird的 ...
- python——双下划线与python命名机制
python中双下划线的作用(1)所有以双下划线开头的成员是私有的(2)python对于私有变量是会进行扎压(mangling)的,扎压规则是原始定义:class A(): __function ...
- css3中的新特性经典应用
这篇文章主要分析css3新特性的典型应用,都是干活,没得水分. 1.动画属性:animation. 利用animation可以实现元素的动画效果,他是一个简写属性,用于设置6个动画属性:aminati ...