CF 282 C
Helping People 题解

原题

time limit per test

2 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

Malek is a rich man. He also is very generous. That's why he decided to split his money between poor people. A charity institute knows npoor people numbered
from 1 to n. The institute gave Malek q recommendations.
A recommendation is a segment of people like [l, r]which means the institute recommended that Malek gives one dollar to every person whose number
is in this segment.

However this charity has very odd rules about the recommendations. Because of those rules the recommendations are given in such a way that for every two recommendation [a, b] and [c, d] one
of the following conditions holds:

  • The two segments are completely disjoint. More formally either a ≤ b < c ≤ d or c ≤ d < a ≤ b
  • One of the two segments are inside another. More formally either a ≤ c ≤ d ≤ b or c ≤ a ≤ b ≤ d.

The goodness of a charity is the value of maximum money a person has after Malek finishes giving his money. The institute knows for each recommendation what is the probability that Malek will
accept it. They want to know the expected value of goodness of this charity. So they asked you for help.

You have been given the list of recommendations and for each recommendation the probability of it being accepted by Malek. You have also been given how much money each person initially has. You must find the expected value of goodness.

Input

In the first line two space-separated integers n, q (1 ≤ n ≤ 105, 1 ≤ q ≤ 5000)
are given.

In the second line n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 109)
are given meaning that person number i initially has ai dollars.

Each of the next q lines contains three space-separated numbers li, ri, pi (1 ≤ li ≤ ri ≤ n, 0 ≤ p ≤ 1)
where li and ri are
two integers describing the segment of recommendation and pi is
a real number given with exactly three digits after decimal point which is equal to probability of Malek accepting this recommendation.

Note that a segment may appear several times in recommendations.

Output

Output the sought value. Your answer will be considered correct if its absolute or relative error is less than 10 - 6.

Sample test(s)
input
5 2
1 7 2 4 3
1 3 0.500
2 2 0.500
output
8.000000000
input
5 2
281 280 279 278 282
1 4 1.000
1 4 0.000
output
282.000000000
input
3 5
1 2 3
1 3 0.500
2 2 0.250
1 2 0.800
1 1 0.120
2 2 0.900
output
4.465000000

废话】好久没写博客了。(我不会告诉你我是离线写的)于是来水经验来了。

来源简述】CF 282 C

原题简述】有N(10^5)个人,每一个人有初始的钱。

再给出M(5000)个操作L,R,P。

每次表示L~R这些人有几率P(0<=P<=1)给他们每人一元。

求最后全部人钱数最大值的期望。

算法简述】首先把这些操作建立出树结构(能够借鉴线段树)。

节点i表示范围Li~Ri,它的父亲一定包括它,它也包括它的全部子树。为了方便,建立一个L=1,R=N,P=0的无效节点作为根。

观察到M的范围小。我们用f[i][j]表示在节点i表示的范围内,加的钱数<=j的期望(注意原先的钱数能够用RMQ计算出)。至于为什么是<=,由于后面要用到前缀和——反正f算的时候再前缀和一下。那么到节点i,我们开一数组tmp[j]表示全部子树中影的最多(注意还是前缀和性质)加了j元的期望。

那么tmp[j]= ∏f[son][mx[i]+j-mx[son]];

mx[o]是原先区间o的最大钱数。

(这里就用到了f的前缀和性质了)

注意到求完后做一步tmp[j]-=tmp[j-1],取消前缀和性质。

然后我们的任务是求出i的全部f值。

那么ans[i][j]=ans[i][j-1]+tmp[j-1]*p[i]+tmp[j]*(1-p[i]);

ans[i][j-1]:前缀和

tmp[j-1]*p[i]:由子树中得最大加j-1,且当前也加

tmp[j]*(1-p[i]):由子树中得最大加j,且当前不加

求完了全部的f[i][j]后,我们对于新加的点K,最后的ans满足

ANS=ans[m][0]*mx[m]+Σ (ans[m][i]-ans[m][i-1])*(mx[m]+i);

【*精华所得类似于分治的树形算法。

【代码】

#include<cstdio>
#include<algorithm>
#include<cmath>
#define N 100005
#define M 5005
using namespace std;
struct arr{int l,r;double p;}a[M];
int f[N][18],mx[N],used[N],n,i,j,T,m,k;
double ans[M][M],tmp[M],ANS;
inline int ask(int x,int y)
{
int len=(int)log2(y-x+1);
return max(f[x][len],f[y-(1<<len)+1][len]);
}
inline int cmp(const arr &a,const arr &b){return a.r-a.l<b.r-b.l;}
int main()
{
scanf("%d%d",&n,&m);
for (i=1;i<=n;i++) scanf("%d",&f[i][0]);
for (j=1;j<=17;j++)
for (i=1;i<=n;i++)
T=i+(1<<(j-1)),f[i][j]=max(f[i][j-1],(T<=n)? f[T][j-1]:0);
for (i=1;i<=m;i++)
scanf("%d%d%lf",&a[i].l,&a[i].r,&a[i].p);
a[++m]=(arr){1,n,0};
sort(a+1,a+m+1,cmp);
for (i=1;i<=m;i++)
{
mx[i]=ask(a[i].l,a[i].r);
for (k=0;k<=m;k++) tmp[k]=1.0;
for (j=1;j<i;j++)
if (a[j].l>=a[i].l&&a[j].r<=a[i].r&&!used[j])
{
used[j]=1;
for (k=0;k<=m;k++)
if (mx[i]+k-mx[j]<=m) tmp[k]*=ans[j][mx[i]+k-mx[j]];
}
for (k=m;k;k--)
tmp[k]-=tmp[k-1];
ans[i][0]=(1-a[i].p)*tmp[0];
for (k=1;k<=m;k++)
ans[i][k]=ans[i][k-1]+tmp[k-1]*a[i].p+tmp[k]*(1-a[i].p);
//ans[i][k-1]:加上k-1的期望(ans[i]实质是前缀和性质)
//tmp[k-1]*p[i]:由子树中得最大加k-1,且当前也加
//tmp[k]*(1-p[i]): 由子树中得最大加k,且当前不加
}
ANS=ans[m][0]*mx[m];
for (i=1;i<=m;i++)
ANS+=(ans[m][i]-ans[m][i-1])*(mx[m]+i);
printf("%.10lf",ANS);
}

Codeforces #282 div 1 C Helping People 题解的更多相关文章

  1. 【codeforces #282(div 1)】AB题解

    A. Treasure time limit per test 2 seconds memory limit per test 256 megabytes input standard input o ...

  2. Codeforces Round #609 (Div. 2)前五题题解

    Codeforces Round #609 (Div. 2)前五题题解 补题补题…… C题写挂了好几个次,最后一题看了好久题解才懂……我太迟钝了…… 然后因为longlong调了半个小时…… A.Eq ...

  3. Codeforces #344 Div.2

    Codeforces #344 Div.2 Interview 题目描述:求两个序列的子序列或操作的和的最大值 solution 签到题 时间复杂度:\(O(n^2)\) Print Check 题目 ...

  4. Lyft Level 5 Challenge 2018 - Final Round (Open Div. 2) (前三题题解)

    这场比赛好毒瘤哇,看第四题好像是中国人出的,怕不是dllxl出的. 第四道什么鬼,互动题不说,花了四十五分钟看懂题目,都想砸电脑了.然后发现不会,互动题从来没做过. 不过这次新号上蓝名了(我才不告诉你 ...

  5. Codeforces #345 Div.1

    Codeforces #345 Div.1 打CF有助于提高做题的正确率. Watchmen 题目描述:求欧拉距离等于曼哈顿距离的点对个数. solution 签到题,其实就是求有多少对点在同一行或同 ...

  6. Codeforces Beta Round #27 (Codeforces format, Div. 2)

    Codeforces Beta Round #27 (Codeforces format, Div. 2) http://codeforces.com/contest/27 A #include< ...

  7. Codeforces#441 Div.2 四小题

    Codeforces#441 Div.2 四小题 链接 A. Trip For Meal 小熊维尼喜欢吃蜂蜜.他每天要在朋友家享用N次蜂蜜 , 朋友A到B家的距离是 a ,A到C家的距离是b ,B到C ...

  8. codeforces #592(Div.2)

    codeforces #592(Div.2) A Pens and Pencils Tomorrow is a difficult day for Polycarp: he has to attend ...

  9. codeforces #578(Div.2)

    codeforces #578(Div.2) A. Hotelier Amugae has a hotel consisting of 1010 rooms. The rooms are number ...

随机推荐

  1. ASP.NET Identity 使用 RoleManager 进行角色管理 (VS2013RC)

    注:本文系作者原创,但可随意转载. 最近做一个Web平台系统,系统包含3个角色,“管理员, 企业用户, 评审专家”, 分别有不同的功能.一直以来都是使用微软封装好的Microsoft.AspNet.I ...

  2. Reinstall msdtc on Windows

    Reinstall MSDTC The system reported an unexpected error condition. You can resolve this condition by ...

  3. KMP字符串匹配算法翔解❤

    看了Angel_Kitty学姐的博客,我豁然开朗,写下此文: 那么首先我们知道,kmp算法是一种字符串匹配算法,那么我们来看一个例子. 比方说,现在我有两段像这样子的字符串: 分别是T和P,很明显,P ...

  4. 【IDEA】IDEA下maven项目无法提示和使用EL表达式的解决办法

    今天在IDEA创建web项目之后发现无法使用EL和JSTL, 一.如果JSP中无法自动提示EL表达式,比如${pageContext.request.contextPath},可在pom.xml的&l ...

  5. fmap为什么可以用function作为第二个参数

    看看fmap的类型 fmap :: Functor f => (a -> b) -> f a -> f b 很明显的,第一个参数是function,第二个参数是functor的 ...

  6. How do I list all fields of an object in Objective-C?

    http://stackoverflow.com/questions/1213901/how-do-i-list-all-fields-of-an-object-in-objective-c As m ...

  7. 内核request_mem_region 和 ioremap的理解【转】

    转自:http://blog.csdn.net/skyflying2012/article/details/8672011 版权声明:本文为博主kerneler辛苦原创,未经允许不得转载. 几乎每一种 ...

  8. Linux单机安转Spark

    安装Spark需要先安装jdk及安装Scala. 1. 创建目录 > mkdir  /opt/spark > cd  /opt/spark 2. 解压缩.创建软连接 > tar  z ...

  9. PHP使用GOEASY实现WEB实时推送

    /** * 订单提醒 */ public function sendOrderNotice(){ //请求地址 $uri = "http://goeasy.io/goeasy/publish ...

  10. UbuntuMate开机自动启动ssh服务

    在文件/etc/init/ssh.conf中,有一句 start on filesystem or runlevel [2345] 如果想关闭自动启动的话,把这一局修改为start on runlev ...