ACM-ICPC 2018 南京赛区网络预赛 E. AC Challenge (状态压缩DP)
Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.
However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi problems, the p_{i, 1}pi,1-th, p_{i, 2}pi,2-th, ......, p_{i, s_i}pi,si-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j≤n,0<j≤si,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.
"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set
If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai+bi points. (|a_i|, |b_i| \le 10^9)(∣ai∣,∣bi∣≤109).
Your task is to calculate the maximum number of points he can get in the contest.
Input
The first line of input contains an integer, nn, which is the number of problems.
Then follows nn lines, the ii-th line contains s_i + 3si+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai,bi,si,p1,p2,...,psias described in the description above.
Output
Output one line with one integer, the maximum number of points he can get in the contest.
Hint
In the first sample.
On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.
On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13points.
On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.
On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.
On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.
So he can get 11+13+13+11+7=5511+13+13+11+7=55points in total.
In the second sample, you should note that he doesn't have to solve all the problems.
样例输入1复制
5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4
样例输出1复制
55
样例输入2复制
1
-100 0 0
样例输出2复制
0
题目大意:有n道题,每道题做出来会得到t*a[i]+b[i]分,但是有些题目有先决条件,需要先完成某些题目才能写,问最多能得到多少分
题目思路:这道题需要用二进制的做法。首先先用二进制表示每道题的先决条件,放入pre数组,第几位是1就是需要先写第几题。然后就把所有的情况全部枚举出来,由于一共就20题,一共也就2^20的情况,然后也是用二进制表示每一种情况。由于是从小到大,所以他的前一刻一定都已经出来了,然后就试探把每一位删掉,判断这道题需要做的先决条件是否已经够了,先&pre[i],如果能够等于pre[i],这说明需要的题目都已经出了,可以推出当前情况,然后数出这种情况是第几个1,也就是说这道题是哪一刻做的,然后就可以算出这种情况下的值。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f ; #define ll long long ll dp[(<<)];
int One[<<];
struct no
{
int a,b,id,per;
}a[];
///得到n的二进制的1,表示的是一共做了多少了
int GetOne(int n)
{
int count = ;
while(n){
count++;
n = n & (n - );
}
return count;
}
int main( )
{
int n ;
scanf("%d",&n);
for(int i= ; i<n ; i++)
{
scanf("%d%d%d",&a[i].a,&a[i].b,&a[i].id); while(a[i].id--)
{
int x ;
scanf("%d",&x);
a[i].per |= (<<(x-)); ///per记录了这个问题需要完成谁
}
}
memset(dp,-INF,sizeof(dp)) ;
ll ans = ;
for(int i= ; i<(<<n) ; i++)
One[i]=GetOne(i); dp[] = ; for(int i= ; i<(<<n) ; i++)
{
if(dp[i]!=-INF) ///减少重复运算
{
for(int j= ; j<n ; j++)
{
if((i & a[j].per)==a[j].per)///如果满足了这个问题的条件
{
if((i&(<<j))==)///如果j问题还没有用到
{
dp[(i|(<<j))] = max( dp[(i|(<<j))] , dp[i]+(ll)(One[i]+)*a[j].a+a[j].b); }
}
}
}
ans = max(ans,dp[i]);
}
printf("%lld\n",ans);
return ;
}
ACM-ICPC 2018 南京赛区网络预赛 E. AC Challenge (状态压缩DP)的更多相关文章
- ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP
题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest with n (0 < n \le 20)n(0& ...
- ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge(状压dp)
https://nanti.jisuanke.com/t/30994 题意 给你n个题目,对于每个题目,在做这个题目之前,规定了必须先做哪几个题目,第t个做的题目i得分是t×ai+bi问最终的最大得分 ...
- ACM-ICPC 2018 南京赛区网络预赛 J.sum
A square-free integer is an integer which is indivisible by any square number except 11. For example ...
- ACM-ICPC 2018 南京赛区网络预赛 E题
ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...
- ACM-ICPC 2018 南京赛区网络预赛B
题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...
- 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)
J. Sum 26.87% 1000ms 512000K A square-free integer is an integer which is indivisible by any squar ...
- 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)
G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K During tea-drinking, princess, amongst other t ...
- 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)
A. An Olympian Math Problem 54.28% 1000ms 65536K Alice, a student of grade 66, is thinking about a ...
- ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall
题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K Feeling hungry, a cute hamster decides to o ...
随机推荐
- 2017-2018-1 20179215《Linux内核原理与分析》第四周作业
本次的实验是使用gdb跟踪调试内核从start_kernel到init进程启动,并分析启动的过程. 1.首先是在实验楼虚拟机上进行调试跟踪的过程. cd LinuxKernel qemu -kerne ...
- 1057 Stack (30)(30 分)
Stack is one of the most fundamental data structures, which is based on the principle of Last In Fir ...
- 移动端H5 button 默认事件
button 在移动端下会有自带的默认事件,如果不处理的话,点击按钮的时候会有自动刷新页面的效果,原因就是button的默认事件没有阻止. 所以在点击事件里面要加上 e.preventDefault( ...
- unity中mesh属性的uv坐标讨论
http://blog.sina.com.cn/s/blog_427cf00b0102vp0j.html 之前在做连连看游戏中,也用到贴图坐标,当时我们讲到,不管是平铺(Tiling)还是偏移(Off ...
- Asp.net工作流workflow实战(一)
最近开发一个项目用到了工作流引擎,之前研究过微软的workflow所有就用它了,距离上次用有一段时间了,好多东西有点模糊了,就在此处一遍写代码一遍回忆. 首先,在我的项目中新建了.netframwor ...
- Floyd-Warshall算法:求结点对的最短路径问题
Floyd-Warshall算法:是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包. 原理: Floyd-Warshall算法的原理是动态 ...
- linux日常管理-rsync格式
rsync支持网络到本地,本地到网络,本地到本地拷贝数据,支持增量拷贝.用作备份. man rsync rsync的两大用法.一种是通过shell,一种是deamon. shell pull远程机器 ...
- fedora18下安装chrome
——杂言:这个fedora18是之前装着玩的,原本用的firefox来调试网站页面的,但是因为fedora上没有安装flash,以及一些其他plugin,所以还是没忍住装了chrome,一劳永逸,也好 ...
- UE mac版16.10.0.22破解
http://bbs.feng.com/read-htm-tid-10828753.html 去官网下载原载,先运行一次,再在终端里执行下面代码就可以破解完成! printf '\x31\xC0\xF ...
- R: data.frame 生成、操作数组。重命名、增、删、改
################################################### 问题:生成.操作数据框 18.4.27 怎么生成数据框 data.frame.,,及其相关操 ...