Dlsj is competing in a contest with n (0 < n \le 20)n(0<n≤20) problems. And he knows the answer of all of these problems.

However, he can submit ii-th problem if and only if he has submitted (and passed, of course) s_isi​ problems, the p_{i, 1}pi,1​-th, p_{i, 2}pi,2​-th, ......, p_{i, s_i}pi,si​​-th problem before.(0 < p_{i, j} \le n,0 < j \le s_i,0 < i \le n)(0<pi,j​≤n,0<j≤si​,0<i≤n) After the submit of a problem, he has to wait for one minute, or cooling down time to submit another problem. As soon as the cooling down phase ended, he will submit his solution (and get "Accepted" of course) for the next problem he selected to solve or he will say that the contest is too easy and leave the arena.

"I wonder if I can leave the contest arena when the problems are too easy for me."
"No problem."
—— CCF NOI Problem set

If he submits and passes the ii-th problem on tt-th minute(or the tt-th problem he solve is problem ii), he can get t \times a_i + b_it×ai​+bi​ points. (|a_i|, |b_i| \le 10^9)(∣ai​∣,∣bi​∣≤109).

Your task is to calculate the maximum number of points he can get in the contest.

Input

The first line of input contains an integer, nn, which is the number of problems.

Then follows nn lines, the ii-th line contains s_i + 3si​+3 integers, a_i,b_i,s_i,p_1,p_2,...,p_{s_i}ai​,bi​,si​,p1​,p2​,...,psi​​as described in the description above.

Output

Output one line with one integer, the maximum number of points he can get in the contest.

Hint

In the first sample.

On the first minute, Dlsj submitted the first problem, and get 1 \times 5 + 6 = 111×5+6=11 points.

On the second minute, Dlsj submitted the second problem, and get 2 \times 4 + 5 = 132×4+5=13points.

On the third minute, Dlsj submitted the third problem, and get 3 \times 3 + 4 = 133×3+4=13 points.

On the forth minute, Dlsj submitted the forth problem, and get 4 \times 2 + 3 = 114×2+3=11 points.

On the fifth minute, Dlsj submitted the fifth problem, and get 5 \times 1 + 2 = 75×1+2=7 points.

So he can get 11+13+13+11+7=5511+13+13+11+7=55points in total.

In the second sample, you should note that he doesn't have to solve all the problems.

样例输入1复制

5
5 6 0
4 5 1 1
3 4 1 2
2 3 1 3
1 2 1 4

样例输出1复制

55

样例输入2复制

1
-100 0 0

样例输出2复制

0

题目大意:有n道题,每道题做出来会得到t*a[i]+b[i]分,但是有些题目有先决条件,需要先完成某些题目才能写,问最多能得到多少分

题目思路:这道题需要用二进制的做法。首先先用二进制表示每道题的先决条件,放入pre数组,第几位是1就是需要先写第几题。然后就把所有的情况全部枚举出来,由于一共就20题,一共也就2^20的情况,然后也是用二进制表示每一种情况。由于是从小到大,所以他的前一刻一定都已经出来了,然后就试探把每一位删掉,判断这道题需要做的先决条件是否已经够了,先&pre[i],如果能够等于pre[i],这说明需要的题目都已经出了,可以推出当前情况,然后数出这种情况是第几个1,也就是说这道题是哪一刻做的,然后就可以算出这种情况下的值。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f ; #define ll long long ll dp[(<<)];
int One[<<];
struct no
{
int a,b,id,per;
}a[];
///得到n的二进制的1,表示的是一共做了多少了
int GetOne(int n)
{
int count = ;
while(n){
count++;
n = n & (n - );
}
return count;
}
int main( )
{
int n ;
scanf("%d",&n);
for(int i= ; i<n ; i++)
{
scanf("%d%d%d",&a[i].a,&a[i].b,&a[i].id); while(a[i].id--)
{
int x ;
scanf("%d",&x);
a[i].per |= (<<(x-)); ///per记录了这个问题需要完成谁
}
}
memset(dp,-INF,sizeof(dp)) ;
ll ans = ;
for(int i= ; i<(<<n) ; i++)
One[i]=GetOne(i); dp[] = ; for(int i= ; i<(<<n) ; i++)
{
if(dp[i]!=-INF) ///减少重复运算
{
for(int j= ; j<n ; j++)
{
if((i & a[j].per)==a[j].per)///如果满足了这个问题的条件
{
if((i&(<<j))==)///如果j问题还没有用到
{
dp[(i|(<<j))] = max( dp[(i|(<<j))] , dp[i]+(ll)(One[i]+)*a[j].a+a[j].b); }
}
}
}
ans = max(ans,dp[i]);
}
printf("%lld\n",ans);
return ;
}

ACM-ICPC 2018 南京赛区网络预赛 E. AC Challenge (状态压缩DP)的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge 状压DP

    题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest with n (0 < n \le 20)n(0& ...

  2. ACM-ICPC 2018 南京赛区网络预赛 E AC Challenge(状压dp)

    https://nanti.jisuanke.com/t/30994 题意 给你n个题目,对于每个题目,在做这个题目之前,规定了必须先做哪几个题目,第t个做的题目i得分是t×ai+bi问最终的最大得分 ...

  3. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  4. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  5. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  6. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  7. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  8. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  9. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

随机推荐

  1. Nhibernate 三种配置方式

    1 App.config 的配置: <?xml version="1.0" encoding="utf-8" ?><configuration ...

  2. java中的设计模式及其六大原则

    设计模式分类: 一共分为3大类:创造型模式.结构型模式.行为型模式. 创造型模式:工厂方法(FactoryMethod).抽象工厂模式(AbstractFactory).建造者模式(Builder). ...

  3. Ubuntu下安装软件

    在ubuntu当中,安装应用程序有三种方法,分别是:apt-get,dpkg安装deb和make install安装源码包三种. apt-get方法 使用apt-get install来安装应用程序算 ...

  4. java流类

    总结:new FileInputStream package com.ds; import java.io.*; import com.da.fgbv; public class rter { pub ...

  5. JAVA 1.5 局部特性(可变参数/ANNOTATION/并发操作)

    1: 可变参数 可变参数意味着可以对某类型参数进行概括,例如十个INT可以总结为一个INT数组,当然在固定长度情况下用数组是很正常的 这也意味着重点是可变,不定长度的参数 PS1:对于继承和重写我没有 ...

  6. Linux 文件名颜色

    在Linux中,文件的颜色都是有含义的.其中, 蓝色表示目录 绿色表示可执行文件 红色表示压缩文件 浅蓝色表示链接文件 灰色表示其它文件 红色闪烁表示链接的文件有问题了 黄色是设备文件,包括block ...

  7. 超牛 猴子补丁,修改python内置的print

    猴子补丁一般是用于修改三方包或官方包,也可以用来修改自己或者他人的代码. 但也可以用来修改python 语言内置的关键字. 本篇博客修改python最常用的内置print,使你使用print时候,自动 ...

  8. linux日常管理-rsync后台服务方式-1

    rsync的另外一种方式,写一个配置文件,放在etc下,通过一个命令启动他,它会监听一个端口,在客户端和服务端进行通信. 远程机器的配置文件 IP是192.168.1.117 配置文件的名字,写成这个 ...

  9. 使用struts2进行文件下载以及下载权限控制的例子

    本测试有两个模块,一个是文件上上传,一个是文件下载,文件下载的时候会检查是否足有权限,如果没有,就会转发到登录页面,如果有权限,就会直接启动下载程序,给浏览器一个输出流. 下面直接上我的代码: 登录表 ...

  10. hbase java API跟新数据,创建表

    package hbaseCURD; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import o ...